Kosmas Hench, David L J Vendrami, Jaume Forcada, Joseph I Hoffman
{"title":"Refinement of the Antarctic fur seal (Arctocephalus gazella) reference genome increases continuity and completeness.","authors":"Kosmas Hench, David L J Vendrami, Jaume Forcada, Joseph I Hoffman","doi":"10.1093/g3journal/jkae179","DOIUrl":null,"url":null,"abstract":"<p><p>The Antarctic fur seal (Arctocephalus gazella) is an important top predator and indicator of the health of the Southern Ocean ecosystem. Although abundant, this species narrowly escaped extinction due to historical sealing and is currently declining as a consequence of climate change. Genomic tools are essential for understanding these anthropogenic impacts and for predicting long-term viability. However, the current reference genome (\"arcGaz3\") shows considerable room for improvement in terms of both completeness and contiguity. We therefore combined PacBio sequencing, haplotype-aware HiRise assembly, and scaffolding based on Hi-C information to generate a refined assembly of the Antarctic fur seal reference genome (\"arcGaz4_h1\"). The new assembly is 2.53 Gb long, has a scaffold N50 of 55.6 Mb and includes 18 chromosome-sized scaffolds, which correspond to the 18 chromosomes expected in otariids. Genome completeness is greatly improved, with 23,408 annotated genes and a Benchmarking Universal Single-Copy Orthologs score raised from 84.7% to 95.2%. We furthermore included the new genome in a reference-free alignment of the genomes of 11 pinniped species to characterize evolutionary conservation across the Pinnipedia using genome-wide Genomic Evolutionary Rate Profiling. We then implemented Gene Ontology enrichment analyses to identify biological processes associated with those genes showing the highest levels of either conservation or differentiation between the 2 major pinniped families, the Otariidae and Phocidae. We show that processes linked to neuronal development, the circulatory system, and osmoregulation are overrepresented both in conserved as well as in differentiated regions of the genome.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae179","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The Antarctic fur seal (Arctocephalus gazella) is an important top predator and indicator of the health of the Southern Ocean ecosystem. Although abundant, this species narrowly escaped extinction due to historical sealing and is currently declining as a consequence of climate change. Genomic tools are essential for understanding these anthropogenic impacts and for predicting long-term viability. However, the current reference genome ("arcGaz3") shows considerable room for improvement in terms of both completeness and contiguity. We therefore combined PacBio sequencing, haplotype-aware HiRise assembly, and scaffolding based on Hi-C information to generate a refined assembly of the Antarctic fur seal reference genome ("arcGaz4_h1"). The new assembly is 2.53 Gb long, has a scaffold N50 of 55.6 Mb and includes 18 chromosome-sized scaffolds, which correspond to the 18 chromosomes expected in otariids. Genome completeness is greatly improved, with 23,408 annotated genes and a Benchmarking Universal Single-Copy Orthologs score raised from 84.7% to 95.2%. We furthermore included the new genome in a reference-free alignment of the genomes of 11 pinniped species to characterize evolutionary conservation across the Pinnipedia using genome-wide Genomic Evolutionary Rate Profiling. We then implemented Gene Ontology enrichment analyses to identify biological processes associated with those genes showing the highest levels of either conservation or differentiation between the 2 major pinniped families, the Otariidae and Phocidae. We show that processes linked to neuronal development, the circulatory system, and osmoregulation are overrepresented both in conserved as well as in differentiated regions of the genome.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.