Jinling Xie, Baolin Li, Tangjian Zhou, Xiaojie Wang
{"title":"The water content, apoptosis, and proliferation of the brain in marine medaka affected by seawater acidification.","authors":"Jinling Xie, Baolin Li, Tangjian Zhou, Xiaojie Wang","doi":"10.1111/1749-4877.12872","DOIUrl":null,"url":null,"abstract":"<p><p>A possible explanation for ocean acidification-induced changes in fish behavior is a systemic effect on the nervous system. Three biological barriers at the blood-brain interface effectively separate the brain from the body fluids. It is not known whether fish brain regions in contact with these barriers are affected by acidification. Here, we studied structural changes in medaka (Oryzias melastigma) brain regions contacting cerebrospinal fluid (CSF) after short-term (7 days) CO<sub>2</sub> exposure. The brain water content decreased significantly and the superficial structure of the pia mater was changed, but there was no obvious damage to the internal structures of the brain after seawater acidification. Seawater acidification also led to an increase in apoptosis and a decrease in the number of proliferative cells in brain areas contacting CSF. These results indicate that the structure of CSF-contacting brain regions in medaka was affected by seawater acidification, and the brain responded to seawater acidification stress by increasing apoptosis and reducing proliferation.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12872","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A possible explanation for ocean acidification-induced changes in fish behavior is a systemic effect on the nervous system. Three biological barriers at the blood-brain interface effectively separate the brain from the body fluids. It is not known whether fish brain regions in contact with these barriers are affected by acidification. Here, we studied structural changes in medaka (Oryzias melastigma) brain regions contacting cerebrospinal fluid (CSF) after short-term (7 days) CO2 exposure. The brain water content decreased significantly and the superficial structure of the pia mater was changed, but there was no obvious damage to the internal structures of the brain after seawater acidification. Seawater acidification also led to an increase in apoptosis and a decrease in the number of proliferative cells in brain areas contacting CSF. These results indicate that the structure of CSF-contacting brain regions in medaka was affected by seawater acidification, and the brain responded to seawater acidification stress by increasing apoptosis and reducing proliferation.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations