Mei Yang, Xueting Liu, Manli Jiang, Jinyue Hu, Zhilin Xiao
{"title":"TAX1BP1/A20 inhibited TLR2-NF-κB activation to induce tolerant expression of IL-6 in endothelial cells.","authors":"Mei Yang, Xueting Liu, Manli Jiang, Jinyue Hu, Zhilin Xiao","doi":"10.1016/j.intimp.2024.112789","DOIUrl":null,"url":null,"abstract":"<p><p>The inflammatory cascadedriven by interleukin-6 (IL-6) plays a crucial role in the initiation and progression of chronic inflammatory conditions such as atherosclerosis. Research has demonstrated that prolonged exposure to inflammatory stimuli leads to the development of \"immune tolerance\" in specialized immune cells such as monocytes and macrophages, serving as a mechanism to prevent tissue damage and curb the inflammatory cascade. However, our recent investigation revealed that immune tolerance did not effectively regulate the production of IL-6 in human umbilical vein endothelial cells (HUVECs) when stimulated by a Toll-like receptor 2 (TLR2) ligand Pam3CSK4, which is a potent activator of the pro-inflammatory transcription factor NF-κB. Furthermore, the negative regulator of NF-κB signaling, A20, was ineffective in suppressing TLR2-induced IL-6 synthesis in this context. Notably, all A20 auxiliary molecules, with the exception of TAX1BP1, were found to be significantly expressed in HUVECs. DNA methylation in TAX1BP1 was confirmed in GEO database. According to the information provided, it is hypothesized that altered DNA methylation in HUVECs could potentially lead to decreased expression of TAX1BP1, thereby impeding A20's capacity to modulate continuous activation of the TLR2-NF-κB pathway. This may consequently lead to unregulated production of IL-6, evading immune tolerance mechanisms. Subsequent investigations suggested that demethylating TAX1BP1 could enhance its expression, potentially reducing the endogenous IL-6 levels induced by repeated TLR2 stimulation and restoring A20's inhibitory role in NF-κB signaling. Additionally, over-expression of TAX1BP1 coulddecrease the production of atherosclerosis-associated cytokines like IL-6, MCP-1, ICAM-1, and VCAM-1, while increasing NO release following repeated Pam3cks4 stimulation, along with enhanced co-localization of TAX1BP1 and A20. These findings indicate that inducing immune tolerance in endothelial cells may effectively suppress endogenous IL-6 production and halt the IL-6-mediated inflammatory cascade, with TAX1BP1/A20 identified as crucial components in this process.These insights provide novel perspectives and potential targets for therapeutic strategies in inflammatoryimmunological disorders involving the overproduction of IL-6.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.112789","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inflammatory cascadedriven by interleukin-6 (IL-6) plays a crucial role in the initiation and progression of chronic inflammatory conditions such as atherosclerosis. Research has demonstrated that prolonged exposure to inflammatory stimuli leads to the development of "immune tolerance" in specialized immune cells such as monocytes and macrophages, serving as a mechanism to prevent tissue damage and curb the inflammatory cascade. However, our recent investigation revealed that immune tolerance did not effectively regulate the production of IL-6 in human umbilical vein endothelial cells (HUVECs) when stimulated by a Toll-like receptor 2 (TLR2) ligand Pam3CSK4, which is a potent activator of the pro-inflammatory transcription factor NF-κB. Furthermore, the negative regulator of NF-κB signaling, A20, was ineffective in suppressing TLR2-induced IL-6 synthesis in this context. Notably, all A20 auxiliary molecules, with the exception of TAX1BP1, were found to be significantly expressed in HUVECs. DNA methylation in TAX1BP1 was confirmed in GEO database. According to the information provided, it is hypothesized that altered DNA methylation in HUVECs could potentially lead to decreased expression of TAX1BP1, thereby impeding A20's capacity to modulate continuous activation of the TLR2-NF-κB pathway. This may consequently lead to unregulated production of IL-6, evading immune tolerance mechanisms. Subsequent investigations suggested that demethylating TAX1BP1 could enhance its expression, potentially reducing the endogenous IL-6 levels induced by repeated TLR2 stimulation and restoring A20's inhibitory role in NF-κB signaling. Additionally, over-expression of TAX1BP1 coulddecrease the production of atherosclerosis-associated cytokines like IL-6, MCP-1, ICAM-1, and VCAM-1, while increasing NO release following repeated Pam3cks4 stimulation, along with enhanced co-localization of TAX1BP1 and A20. These findings indicate that inducing immune tolerance in endothelial cells may effectively suppress endogenous IL-6 production and halt the IL-6-mediated inflammatory cascade, with TAX1BP1/A20 identified as crucial components in this process.These insights provide novel perspectives and potential targets for therapeutic strategies in inflammatoryimmunological disorders involving the overproduction of IL-6.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.