Yan-Yu Kou, Jie Liu, Yung-Ting Chang, Li-Yun Liu, Fan Sun, Yi-Lin Li, Jia-Rong Leng, Hou-Wen Lin, Fan Yang
{"title":"Marine derived macrolide bryostatin 4 inhibits the TGF-β signaling pathway against acute erythroleukemia.","authors":"Yan-Yu Kou, Jie Liu, Yung-Ting Chang, Li-Yun Liu, Fan Sun, Yi-Lin Li, Jia-Rong Leng, Hou-Wen Lin, Fan Yang","doi":"10.1007/s13402-024-00968-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Acute erythroleukemia (AEL) is a rare and highly aggressive subtype of acute myeloid leukemia (AML) with an extremely poor prognosis when treated with available drugs. Therefore, new investigational agents capable of inducing remission are urgently required.</p><p><strong>Methods: </strong>Bioinformatics analysis, western blot and qRT-PCR were used to reveal the potential biological mechanism of bryostatin 4 (B4), an antineoplastic macrolide derived from the marine bryozoan Bugula neritina. Then, in vivo experiments were conducted to evaluate the role of transforming growth factor (TGF)-β signaling in the progression of AEL.</p><p><strong>Results: </strong>Our results revealed that the proliferation of K562 cells and TF-1 cells was significantly inhibited by B4 at IC<sub>50</sub> values of 37 nM and 52 nM, respectively. B4 inhibited TGF-β signaling and its downstream pathway targets, particularly the phosphorylation of Smad2, Smad3, Ras, C-RAF, ERK1/2, and MEK. B4 also played an important role in cell invasion and migration in K562 cells and TF-1 cells by reducing the protein levels of the mesenchymal cell marker vimentin. Moreover, Flow cytometry and western blot analyses demonstrated that B4 induced apoptosis and initiated G0/G1 phase arrest by modulating mitochondrial dysfunction and cyclin-dependent kinase (CDK) expression.</p><p><strong>Conclusion: </strong>These findings indicated that B4 could inhibit the proliferation, migration, invasion, and TGF-β signaling pathways of AEL cells, thus suggesting that B4 possesses therapeutic potential as a treatment for AEL.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-00968-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Acute erythroleukemia (AEL) is a rare and highly aggressive subtype of acute myeloid leukemia (AML) with an extremely poor prognosis when treated with available drugs. Therefore, new investigational agents capable of inducing remission are urgently required.
Methods: Bioinformatics analysis, western blot and qRT-PCR were used to reveal the potential biological mechanism of bryostatin 4 (B4), an antineoplastic macrolide derived from the marine bryozoan Bugula neritina. Then, in vivo experiments were conducted to evaluate the role of transforming growth factor (TGF)-β signaling in the progression of AEL.
Results: Our results revealed that the proliferation of K562 cells and TF-1 cells was significantly inhibited by B4 at IC50 values of 37 nM and 52 nM, respectively. B4 inhibited TGF-β signaling and its downstream pathway targets, particularly the phosphorylation of Smad2, Smad3, Ras, C-RAF, ERK1/2, and MEK. B4 also played an important role in cell invasion and migration in K562 cells and TF-1 cells by reducing the protein levels of the mesenchymal cell marker vimentin. Moreover, Flow cytometry and western blot analyses demonstrated that B4 induced apoptosis and initiated G0/G1 phase arrest by modulating mitochondrial dysfunction and cyclin-dependent kinase (CDK) expression.
Conclusion: These findings indicated that B4 could inhibit the proliferation, migration, invasion, and TGF-β signaling pathways of AEL cells, thus suggesting that B4 possesses therapeutic potential as a treatment for AEL.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.