Yang Shen, Xuhao Sun, Xiu-Shen Wei, Anqi Xu, Lingyan Gao
{"title":"Equiangular Basis Vectors: A Novel Paradigm for Classification Tasks","authors":"Yang Shen, Xuhao Sun, Xiu-Shen Wei, Anqi Xu, Lingyan Gao","doi":"10.1007/s11263-024-02189-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose Equiangular Basis Vectors (EBVs) as a novel training paradigm of deep learning for image classification tasks. Differing from prominent training paradigms, e.g., <i>k</i>-way classification layers (mapping the learned representations to the label space) and deep metric learning (quantifying sample similarity), our method generates normalized vector embeddings as \"predefined classifiers\", which act as the fixed learning targets corresponding to different categories. By minimizing the spherical distance of the embedding of an input between its categorical EBV in training, the predictions can be obtained by identifying the categorical EBV with the smallest distance during inference. More importantly, by directly adding EBVs corresponding to newly added categories of equal status on the basis of existing EBVs, our method exhibits strong scalability to deal with the large increase of training categories in open-environment machine learning. In experiments, we evaluate EBVs on diverse computer vision tasks with large-scale real-world datasets, including classification on ImageNet-1K, object detection on COCO, semantic segmentation on ADE20K, etc. We further collected a dataset consisting of 100,000 categories to validate the superior performance of EBVs when handling a large number of categories. Comprehensive experiments validate both the effectiveness and scalability of our EBVs. Our method won the first place in the 2022 DIGIX Global AI Challenge, code along with all associated logs are open-source and available at https://github.com/aassxun/Equiangular-Basis-Vectors.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"45 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02189-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose Equiangular Basis Vectors (EBVs) as a novel training paradigm of deep learning for image classification tasks. Differing from prominent training paradigms, e.g., k-way classification layers (mapping the learned representations to the label space) and deep metric learning (quantifying sample similarity), our method generates normalized vector embeddings as "predefined classifiers", which act as the fixed learning targets corresponding to different categories. By minimizing the spherical distance of the embedding of an input between its categorical EBV in training, the predictions can be obtained by identifying the categorical EBV with the smallest distance during inference. More importantly, by directly adding EBVs corresponding to newly added categories of equal status on the basis of existing EBVs, our method exhibits strong scalability to deal with the large increase of training categories in open-environment machine learning. In experiments, we evaluate EBVs on diverse computer vision tasks with large-scale real-world datasets, including classification on ImageNet-1K, object detection on COCO, semantic segmentation on ADE20K, etc. We further collected a dataset consisting of 100,000 categories to validate the superior performance of EBVs when handling a large number of categories. Comprehensive experiments validate both the effectiveness and scalability of our EBVs. Our method won the first place in the 2022 DIGIX Global AI Challenge, code along with all associated logs are open-source and available at https://github.com/aassxun/Equiangular-Basis-Vectors.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.