Understanding the in-situ transformation of CuxO interlayers to increase the water splitting efficiency in NiO/n-Si photoanodes

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-07-31 DOI:10.1038/s41467-024-50893-x
Chao Feng, Zhi Liu, Huanxin Ju, Andraž Mavrič, Matjaz Valant, Jie Fu, Beibei Zhang, Yanbo Li
{"title":"Understanding the in-situ transformation of CuxO interlayers to increase the water splitting efficiency in NiO/n-Si photoanodes","authors":"Chao Feng, Zhi Liu, Huanxin Ju, Andraž Mavrič, Matjaz Valant, Jie Fu, Beibei Zhang, Yanbo Li","doi":"10.1038/s41467-024-50893-x","DOIUrl":null,"url":null,"abstract":"<p>The buried interface tens of nanometers beneath the solid-liquid junction is crucial for photocarrier extraction, influencing the overall efficiency of photoelectrochemical devices. Precise characterization of the interfacial properties is essential for device optimization but remains challenging. Here, we directly probe the in situ transformation of a Cu<sub><i>x</i></sub>O interlayer at the NiO/n-Si interface by hard X-ray photoelectron spectroscopy. It is found that Cu(I) in the Cu<sub><i>x</i></sub>O interlayer gradually transforms to Cu(II) with air exposure, forming an energetically more favorable interface and improving photoanode’s efficiency. Based on this finding, a reactive e-beam evaporation process is developed for the direct deposition of a CuO interlayer, achieving a half-cell solar-to-hydrogen efficiency of 4.56% for the optimized NiO/CuO/n-Si heterojunction photoanode. Our results highlight the importance of precision characterization of interfacial properties with advanced hard X-ray photoelectron spectroscopy in guiding the design of efficient solar water-splitting devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-50893-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The buried interface tens of nanometers beneath the solid-liquid junction is crucial for photocarrier extraction, influencing the overall efficiency of photoelectrochemical devices. Precise characterization of the interfacial properties is essential for device optimization but remains challenging. Here, we directly probe the in situ transformation of a CuxO interlayer at the NiO/n-Si interface by hard X-ray photoelectron spectroscopy. It is found that Cu(I) in the CuxO interlayer gradually transforms to Cu(II) with air exposure, forming an energetically more favorable interface and improving photoanode’s efficiency. Based on this finding, a reactive e-beam evaporation process is developed for the direct deposition of a CuO interlayer, achieving a half-cell solar-to-hydrogen efficiency of 4.56% for the optimized NiO/CuO/n-Si heterojunction photoanode. Our results highlight the importance of precision characterization of interfacial properties with advanced hard X-ray photoelectron spectroscopy in guiding the design of efficient solar water-splitting devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解 CuxO 夹层的原位转化以提高 NiO/n-Si 光阳极的水分离效率
固液交界处下数十纳米的埋藏界面对于光载体的萃取至关重要,影响着光电化学器件的整体效率。界面特性的精确表征对于设备优化至关重要,但仍具有挑战性。在这里,我们通过硬 X 射线光电子能谱直接探测了 NiO/n-Si 界面上 CuxO 夹层的原位转变。研究发现,CuxO 中间层中的 Cu(I)会随着空气暴露逐渐转化为 Cu(II),从而形成一个能量更有利的界面,提高光阳极的效率。基于这一发现,我们开发了一种反应电子束蒸发工艺,用于直接沉积 CuO 中间层,使优化的 NiO/CuO/n-Si 异质结光电阳极的半电池太阳能转化为氢气的效率达到 4.56%。我们的研究结果凸显了利用先进的硬 X 射线光电子能谱精确表征界面特性对于指导设计高效太阳能分水器件的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Normothermic ex vivo kidney perfusion preserves mitochondrial and graft function after warm ischemia and is further enhanced by AP39 Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations An expanded database and analytical toolkit for identifying bacterial virulence factors and their associations with chronic diseases Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders A metabolomic profile of biological aging in 250,341 individuals from the UK Biobank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1