Manipulating Superexchange Interaction of Ru–O–Fe Sites for Enhanced Electrocatalytic Nitrate-to-Ammonia Selectivity

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-07-30 DOI:10.1021/acscatal.4c02698
Mengyang Xia, Chao Zhao, Hang Xiao, Wei Liu, Yang Li, He Li, Honghui Ou, Guidong Yang
{"title":"Manipulating Superexchange Interaction of Ru–O–Fe Sites for Enhanced Electrocatalytic Nitrate-to-Ammonia Selectivity","authors":"Mengyang Xia, Chao Zhao, Hang Xiao, Wei Liu, Yang Li, He Li, Honghui Ou, Guidong Yang","doi":"10.1021/acscatal.4c02698","DOIUrl":null,"url":null,"abstract":"Fe-based catalysts are promising for electrochemical nitrate reduction, but their selectivity is limited by the multielectron/proton transfer reaction steps. Here, we propose optimizing the <i>e</i><sub><i>g</i></sub>-orbital electron occupancy by regulating the superexchange interaction of the Fe site to improve the NH<sub>3</sub> production performance. Our experimental and theoretical prediction results confirmed that Ru–O–Fe sites in double perovskite iron oxides (LaFe<sub>0.9</sub>Ru<sub>0.1</sub>O<sub>3</sub>) have more significant superexchange interactions, mainly manifested by O-anion-mediated electron transfer from Ru to Fe cations. Ru alters Fe’s spin configuration through Ru–O–Fe orbital hybridization, transitioning from a high-spin (HS, <i>e</i><sub><i>g</i></sub> ≈ 2) to an intermediate-spin state (<i>e</i><sub><i>g</i></sub> ≈ 1). This transition promotes NO<sub>3</sub><sup>–</sup> adsorption and lowers the hydrogenation energy barrier of the *NO intermediate. Consequently, LaFe<sub>0.9</sub>Ru<sub>0.1</sub>O<sub>3</sub> could efficiently convert NO<sub>3</sub><sup>–</sup> to NH<sub>3</sub>, achieving rates of 0.75 mmol·h<sup>–1</sup>·cm<sup>–2</sup> with a Faraday efficiency of 98.5%. Remarkably, the NH<sub>3</sub> selectivity was as high as 90.7%, which represents almost the best catalyst to date.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c02698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fe-based catalysts are promising for electrochemical nitrate reduction, but their selectivity is limited by the multielectron/proton transfer reaction steps. Here, we propose optimizing the eg-orbital electron occupancy by regulating the superexchange interaction of the Fe site to improve the NH3 production performance. Our experimental and theoretical prediction results confirmed that Ru–O–Fe sites in double perovskite iron oxides (LaFe0.9Ru0.1O3) have more significant superexchange interactions, mainly manifested by O-anion-mediated electron transfer from Ru to Fe cations. Ru alters Fe’s spin configuration through Ru–O–Fe orbital hybridization, transitioning from a high-spin (HS, eg ≈ 2) to an intermediate-spin state (eg ≈ 1). This transition promotes NO3 adsorption and lowers the hydrogenation energy barrier of the *NO intermediate. Consequently, LaFe0.9Ru0.1O3 could efficiently convert NO3 to NH3, achieving rates of 0.75 mmol·h–1·cm–2 with a Faraday efficiency of 98.5%. Remarkably, the NH3 selectivity was as high as 90.7%, which represents almost the best catalyst to date.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
操纵 Ru-O-Fe 位点的超交换相互作用以增强硝酸-氨的电催化选择性
铁基催化剂有望用于电化学硝酸盐还原,但其选择性受到多电子/质子转移反应步骤的限制。在此,我们建议通过调节 Fe 位点的超交换相互作用来优化电子轨道的电子占有率,从而提高 NH3 生成性能。我们的实验和理论预测结果证实,双包晶铁氧化物(LaFe0.9Ru0.1O3)中的Ru-O-Fe位点具有更显著的超交换相互作用,主要表现为O-阴离子介导的电子从Ru转移到Fe阳离子。Ru 通过 Ru-O-Fe 轨道杂化改变 Fe 的自旋构型,从高自旋(HS,例如 ≈ 2)过渡到中自旋状态(例如 ≈ 1)。这种转变促进了 NO3- 的吸附,并降低了 *NO 中间体的氢化能垒。因此,LaFe0.9Ru0.1O3 能有效地将 NO3- 转化为 NH3,转化率达到 0.75 mmol-h-1-cm-2,法拉第效率为 98.5%。值得注意的是,NH3 的选择性高达 90.7%,几乎是迄今为止最好的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Issue Publication Information Gallium Cluster-Promoted In2O3 Catalyst for CO2 Hydrogenation to Methanol Catalyst Site Requirements for Olefin Etherification over H-Beta Zeolites Iron Nitride Formation and Decomposition during Ammonia Decomposition over a Wustite-Based Bulk Iron Catalyst Photocatalytic Oxidative Activation of Bicyclo[1.1.0]butanes for Formal [2σ+2π] Cycloadditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1