Room-Temperature Synthesis of Covalently Bridged MOP@TpPa-CH3 Composite Photocatalysts for Artificial Photosynthesis.

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-08-12 Epub Date: 2024-08-01 DOI:10.1021/acs.inorgchem.4c02112
Wen-Tao Ju, Yao-Mei Fu, Hai-Ning Wang, Jun-Rui Liu, Jian-Xin Qu, Meng Lian, Teng Liu, Xing Meng, Zhong-Min Su
{"title":"Room-Temperature Synthesis of Covalently Bridged MOP@TpPa-CH<sub>3</sub> Composite Photocatalysts for Artificial Photosynthesis.","authors":"Wen-Tao Ju, Yao-Mei Fu, Hai-Ning Wang, Jun-Rui Liu, Jian-Xin Qu, Meng Lian, Teng Liu, Xing Meng, Zhong-Min Su","doi":"10.1021/acs.inorgchem.4c02112","DOIUrl":null,"url":null,"abstract":"<p><p>The conversion of CO<sub>2</sub> into useful chemicals via photocatalysts is a promising strategy for resolving the environmental problems caused by the addition of CO<sub>2</sub>. Herein, a series of composite photocatalysts MOP@TpPa-CH<sub>3</sub> based on MOP-NH<sub>2</sub> and TpPa-CH<sub>3</sub> through covalent bridging have been prepared via a facile room-temperature evaporation method and employed for photocatalytic CO<sub>2</sub> reduction. The photocatalytic performances of MOP@TpPa-CH<sub>3</sub> are greater than those of TpPa-CH<sub>3</sub> and MOP-NH<sub>2</sub>, where the CO generation rate of MOP@TpPa-CH<sub>3</sub> under 10% CO<sub>2</sub> still reaches 119.25 μmol g<sup>-1</sup> h<sup>-1</sup>, which is 2.18 times higher than that under pure CO<sub>2</sub> (54.74 μmol g<sup>-1</sup> h<sup>-1</sup>). To investigate the structural factors affecting the photocatalytic activity, MOP@TBPa-CH<sub>3</sub> without C═O groups is synthesized, and the photoreduction performance is also evaluated. The controlling experimental results demonstrate that the excellent photoreduction CO<sub>2</sub> performance of MOP@TpPa-CH<sub>3</sub> in a 10% CO<sub>2</sub> atmosphere is due to the presence of C═O groups in TpPa-CH<sub>3</sub>. This work offers a new design and construction strategy for novel MOP@COF composites.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c02112","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of CO2 into useful chemicals via photocatalysts is a promising strategy for resolving the environmental problems caused by the addition of CO2. Herein, a series of composite photocatalysts MOP@TpPa-CH3 based on MOP-NH2 and TpPa-CH3 through covalent bridging have been prepared via a facile room-temperature evaporation method and employed for photocatalytic CO2 reduction. The photocatalytic performances of MOP@TpPa-CH3 are greater than those of TpPa-CH3 and MOP-NH2, where the CO generation rate of MOP@TpPa-CH3 under 10% CO2 still reaches 119.25 μmol g-1 h-1, which is 2.18 times higher than that under pure CO2 (54.74 μmol g-1 h-1). To investigate the structural factors affecting the photocatalytic activity, MOP@TBPa-CH3 without C═O groups is synthesized, and the photoreduction performance is also evaluated. The controlling experimental results demonstrate that the excellent photoreduction CO2 performance of MOP@TpPa-CH3 in a 10% CO2 atmosphere is due to the presence of C═O groups in TpPa-CH3. This work offers a new design and construction strategy for novel MOP@COF composites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于人工光合作用的共价桥接 MOP@TpPa-CH3 复合光催化剂的室温合成。
通过光催化剂将 CO2 转化为有用的化学物质是解决 CO2 增量所带来的环境问题的一种前景广阔的策略。本文通过简便的室温蒸发法制备了一系列基于 MOP-NH2 和 TpPa-CH3 通过共价桥接的复合光催化剂 MOP@TpPa-CH3,并将其用于光催化还原 CO2。MOP@TpPa-CH3的光催化性能高于TpPa-CH3和MOP-NH2,其中MOP@TpPa-CH3在10% CO2条件下的CO生成率仍高达119.25 μmol g-1 h-1,是纯CO2条件下(54.74 μmol g-1 h-1)的2.18倍。为了研究影响光催化活性的结构因素,还合成了不含 C═O 基团的 MOP@TBPa-CH3,并对其光还原性能进行了评估。对照实验结果表明,MOP@TpPa-CH3 在 10% CO2 大气中具有优异的光催化还原 CO2 性能是由于 TpPa-CH3 中存在 C═O 基团。这项工作为新型 MOP@COF 复合材料提供了一种新的设计和构造策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
[closo-B10H8-1-CN-10-Azinium]- Anions: Photoactive Heteroditopic Ligands for Metal Complexes. Aerophobic/Hydrophilic Nickel-Iron Sulfide Nanoarrays for Energy-Saving Hydrogen Production from Seawater Splitting Assisted by Sulfion Oxidation Reaction. Aggregation Game: Changing Solid-State Emission Using Different Counterions in Monoalkynylphosphonium Pt(II) Complexes. Borafluorene-Mediated Sulfur Activation: Isolation of Boryl-Linked S7 and S8 Catenates and Related Chalcogenide Molecules. Computational Insights into the Non-Heme Diiron Alkane Monooxygenase Enzyme AlkB: Electronic Structures, Dioxygen Activation, and Hydroxylation Mechanism of Liquid Alkanes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1