A Nanozyme-Boosted MOF-CRISPR Platform for Treatment of Alzheimer's Disease.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-08-14 Epub Date: 2024-08-01 DOI:10.1021/acs.nanolett.4c02272
Jie Yang, Geng Qin, Zhenqi Liu, Haochen Zhang, Xiubo Du, Jinsong Ren, Xiaogang Qu
{"title":"A Nanozyme-Boosted MOF-CRISPR Platform for Treatment of Alzheimer's Disease.","authors":"Jie Yang, Geng Qin, Zhenqi Liu, Haochen Zhang, Xiubo Du, Jinsong Ren, Xiaogang Qu","doi":"10.1021/acs.nanolett.4c02272","DOIUrl":null,"url":null,"abstract":"<p><p>Rectifying the aberrant microenvironment of a disease through maintenance of redox homeostasis has emerged as a promising perspective with significant therapeutic potential for Alzheimer's disease (AD). Herein, we design and construct a novel nanozyme-boosted MOF-CRISPR platform (CMOPKP), which can maintain redox homeostasis and rescue the impaired microenvironment of AD. By modifying the targeted peptides KLVFFAED, CMOPKP can traverse the blood-brain barrier and deliver the CRISPR activation system for precise activation of the Nrf2 signaling pathway and downstream redox proteins in regions characterized by oxidative stress, thereby reinstating neuronal antioxidant capacity and preserving redox homeostasis. Furthermore, cerium dioxide possessing catalase enzyme-like activity can synergistically alleviate oxidative stress. Further <i>in vivo</i> studies demonstrate that CMOPKP can effectively alleviate cognitive impairment in 3xTg-AD mouse models. Therefore, our design presents an effective way for regulating redox homeostasis in AD, which shows promise as a therapeutic strategy for mitigating oxidative stress in AD.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02272","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rectifying the aberrant microenvironment of a disease through maintenance of redox homeostasis has emerged as a promising perspective with significant therapeutic potential for Alzheimer's disease (AD). Herein, we design and construct a novel nanozyme-boosted MOF-CRISPR platform (CMOPKP), which can maintain redox homeostasis and rescue the impaired microenvironment of AD. By modifying the targeted peptides KLVFFAED, CMOPKP can traverse the blood-brain barrier and deliver the CRISPR activation system for precise activation of the Nrf2 signaling pathway and downstream redox proteins in regions characterized by oxidative stress, thereby reinstating neuronal antioxidant capacity and preserving redox homeostasis. Furthermore, cerium dioxide possessing catalase enzyme-like activity can synergistically alleviate oxidative stress. Further in vivo studies demonstrate that CMOPKP can effectively alleviate cognitive impairment in 3xTg-AD mouse models. Therefore, our design presents an effective way for regulating redox homeostasis in AD, which shows promise as a therapeutic strategy for mitigating oxidative stress in AD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于治疗阿尔茨海默病的纳米酶促进 MOF-CRISPR 平台。
通过维持氧化还原稳态来纠正疾病的异常微环境已成为阿尔茨海默病(AD)的一个具有巨大治疗潜力的前景。在这里,我们设计并构建了一种新型的纳米酶促MOF-CRISPR平台(CMOPKP),它可以维持氧化还原稳态并挽救阿尔茨海默病受损的微环境。通过对靶向肽 KLVFFAED 进行修饰,CMOPKP 可以穿越血脑屏障,将 CRISPR 激活系统送入以氧化应激为特征的区域,精确激活 Nrf2 信号通路和下游氧化还原蛋白,从而恢复神经元的抗氧化能力,维持氧化还原平衡。此外,具有类似过氧化氢酶活性的二氧化铈可以协同缓解氧化应激。进一步的体内研究表明,CMOPKP 能有效缓解 3xTg-AD 小鼠模型的认知障碍。因此,我们的设计提供了一种调节 AD 氧化还原平衡的有效方法,有望成为减轻 AD 氧化应激的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Bioinspired Intelligent Ferrofluid: Old Magnetic Material with New Optical Properties. Damage-Free Plasma Source for Atomic-Scale Processing. Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride. Phosphorus Coordination in Second Shell of Single-Atom Cu Catalyst toward Acetate Production in CO Electroreduction. A Roadmap for Ferroelectric–Antiferroelectric Phase Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1