Morphology of Copper Nanofoams for Radiation Hydrodynamics and Fusion Applications Investigated by 3D Ptychotomography.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-08-14 Epub Date: 2024-08-01 DOI:10.1021/acs.nanolett.4c02289
Adra Carr, Yancey Sechrest, Kevin Mertes, Brian Martin Patterson, Brendt Wohlberg, Levi Hancock, Nicholas Sirica, Richard Sandberg, Christine Sweeney, James Hunter, William Ward, Matthew H Seaberg, Diling Zhu, Vincent Esposito, Eric Galtier, Sanghoon Song, Theodore F Baumann, Michael Stadermann, Arianna Gleason, Nina R Weisse-Bernstein
{"title":"Morphology of Copper Nanofoams for Radiation Hydrodynamics and Fusion Applications Investigated by 3D Ptychotomography.","authors":"Adra Carr, Yancey Sechrest, Kevin Mertes, Brian Martin Patterson, Brendt Wohlberg, Levi Hancock, Nicholas Sirica, Richard Sandberg, Christine Sweeney, James Hunter, William Ward, Matthew H Seaberg, Diling Zhu, Vincent Esposito, Eric Galtier, Sanghoon Song, Theodore F Baumann, Michael Stadermann, Arianna Gleason, Nina R Weisse-Bernstein","doi":"10.1021/acs.nanolett.4c02289","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of metal and polymer foams used in inertial confinement fusion (ICF), inertial fusion energy (IFE), and high-energy-density (HED) experiments is currently limited by our understanding of their nanostructure and its variation in bulk material. We utilized an X-ray-free electron laser (XFEL) together with lensless X-ray imaging techniques to probe the 3D morphology of copper foams at nanoscale resolution (28 nm). The observed morphology of the thin shells is more varied than expected from previous characterizations, with a large number of them distorted, merged, or open, and a targeted mass density 14% less than calculated. This nanoscale information can be used to directly inform and improve foam modeling and fabrication methods to create a tailored material response for HED experiments.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02289","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of metal and polymer foams used in inertial confinement fusion (ICF), inertial fusion energy (IFE), and high-energy-density (HED) experiments is currently limited by our understanding of their nanostructure and its variation in bulk material. We utilized an X-ray-free electron laser (XFEL) together with lensless X-ray imaging techniques to probe the 3D morphology of copper foams at nanoscale resolution (28 nm). The observed morphology of the thin shells is more varied than expected from previous characterizations, with a large number of them distorted, merged, or open, and a targeted mass density 14% less than calculated. This nanoscale information can be used to directly inform and improve foam modeling and fabrication methods to create a tailored material response for HED experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过三维断层扫描研究辐射流体力学和聚变应用中的纳米铜泡沫形态。
目前,惯性约束聚变(ICF)、惯性聚变能(IFE)和高能量密度(HED)实验中使用的金属和聚合物泡沫的性能受到我们对其纳米结构及其在块体材料中的变化的了解的限制。我们利用无 X 射线电子激光器 (XFEL) 和无透镜 X 射线成像技术,以纳米级分辨率(28 纳米)探测铜泡沫的三维形态。观察到的薄壳形态比之前的表征结果更加多样,其中大量薄壳扭曲、合并或打开,目标质量密度比计算值低 14%。这些纳米级信息可直接用于指导和改进泡沫建模和制造方法,为 HED 实验提供量身定制的材料响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Bioinspired Intelligent Ferrofluid: Old Magnetic Material with New Optical Properties. Damage-Free Plasma Source for Atomic-Scale Processing. Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride. Phosphorus Coordination in Second Shell of Single-Atom Cu Catalyst toward Acetate Production in CO Electroreduction. A Roadmap for Ferroelectric–Antiferroelectric Phase Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1