Synergistically Engineering Grains and Grain Boundaries toward Li Dendrite-Free Li7La3Zr2O12.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-08-14 Epub Date: 2024-08-01 DOI:10.1021/acs.nanolett.4c01266
Shiwei Deng, Huilin Zhu, Zhiyuan Zheng, Zixiang Kong, Zixing Wang, Wang Zhou, Rui Tang, Jian-Fang Wu, Jilei Liu
{"title":"Synergistically Engineering Grains and Grain Boundaries toward Li Dendrite-Free Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>.","authors":"Shiwei Deng, Huilin Zhu, Zhiyuan Zheng, Zixiang Kong, Zixing Wang, Wang Zhou, Rui Tang, Jian-Fang Wu, Jilei Liu","doi":"10.1021/acs.nanolett.4c01266","DOIUrl":null,"url":null,"abstract":"<p><p>Cation-doped cubic Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li<sub>2</sub>CO<sub>3</sub> and high electronic conductivity, which give rise to an unconformable Li/Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> interface and lithium dendrites. Herein, composite AlF<sub>3</sub>-Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> solid electrolytes were created based on thermal AlF<sub>3</sub> decomposition and F/O displacement reactions under a high-temperature sintering process. When the AlF<sub>3</sub> is thermally decomposed, it leaves Al<sub>2</sub>O<sub>3</sub>/AlF<sub>3</sub> meliorating the grain boundaries and F<sup>-</sup> ions partially displacing O<sup>2-</sup> ions in the grains. Due to the higher electronegativity of F<sup>-</sup> in the grains and the grain-boundary modification, these AlF<sub>3</sub>-Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> deliver optimized electronic conduction and chemical stability against the formation of Li<sub>2</sub>CO<sub>3</sub>. The Li/AlF<sub>3</sub>-Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub>/Li cell exhibits a low interfacial resistance of ∼16 Ω cm<sup>2</sup> and an ultrastable long-term cycling behavior for 800 h under a current density of 200 μA/cm<sup>2</sup>, leading to Li//LiCoO<sub>2</sub> solid-state batteries with good rate performance and cycling stability.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01266","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cation-doped cubic Li7La3Zr2O12 is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li2CO3 and high electronic conductivity, which give rise to an unconformable Li/Li7La3Zr2O12 interface and lithium dendrites. Herein, composite AlF3-Li6.4La3Zr1.4Ta0.6O12 solid electrolytes were created based on thermal AlF3 decomposition and F/O displacement reactions under a high-temperature sintering process. When the AlF3 is thermally decomposed, it leaves Al2O3/AlF3 meliorating the grain boundaries and F- ions partially displacing O2- ions in the grains. Due to the higher electronegativity of F- in the grains and the grain-boundary modification, these AlF3-Li6.4La3Zr1.4Ta0.6O12 deliver optimized electronic conduction and chemical stability against the formation of Li2CO3. The Li/AlF3-Li6.4La3Zr1.4Ta0.6O12/Li cell exhibits a low interfacial resistance of ∼16 Ω cm2 and an ultrastable long-term cycling behavior for 800 h under a current density of 200 μA/cm2, leading to Li//LiCoO2 solid-state batteries with good rate performance and cycling stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对晶粒和晶界进行协同工程,实现无枝晶锂 7La3Zr2O12
阳离子掺杂的立方 Li7La3Zr2O12 被认为是一种很有前途的固态电解质,可用于制造安全、高能量的固态锂电池。然而,它存在形成 Li2CO3 和高电子传导性的问题,从而导致 Li/Li7La3Zr2O12 界面不成型和锂枝晶的产生。在此,基于高温烧结过程中 AlF3 的热分解和 F/O 置换反应,创建了 AlF3-Li6.4La3Zr1.4Ta0.6O12 复合固体电解质。AlF3 热分解后,Al2O3/AlF3 熔化晶界,F- 离子部分取代晶粒中的 O2- 离子。由于晶粒中 F- 的电负性较高以及晶界的改良,这些 AlF3-Li6.4La3Zr1.4Ta0.6O12 具有最佳的电子传导性和化学稳定性,可防止 Li2CO3 的形成。锂/AlF3-Li6.4La3Zr1.4Ta0.6O12/锂电池的界面电阻低至 16 Ω cm2,在 200 μA/cm2 的电流密度下可进行 800 小时的超稳定长期循环,从而制成具有良好速率性能和循环稳定性的锂//钴酸锂固态电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Bioinspired Intelligent Ferrofluid: Old Magnetic Material with New Optical Properties. Damage-Free Plasma Source for Atomic-Scale Processing. Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride. Phosphorus Coordination in Second Shell of Single-Atom Cu Catalyst toward Acetate Production in CO Electroreduction. A Roadmap for Ferroelectric–Antiferroelectric Phase Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1