Predicting Clearance with Simple and Permeability-Limited Physiologically Based Pharmacokinetic Frameworks: Comparison of Well-Stirred, Dispersion, and Parallel-Tube Liver Models.

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Metabolism and Disposition Pub Date : 2024-09-16 DOI:10.1124/dmd.124.001782
Swati Nagar, Rachel Parise, Ken Korzekwa
{"title":"Predicting Clearance with Simple and Permeability-Limited Physiologically Based Pharmacokinetic Frameworks: Comparison of Well-Stirred, Dispersion, and Parallel-Tube Liver Models.","authors":"Swati Nagar, Rachel Parise, Ken Korzekwa","doi":"10.1124/dmd.124.001782","DOIUrl":null,"url":null,"abstract":"<p><p>One-compartment (1C) and permeability-limited models were used to evaluate the ability of microsomal and hepatocyte intrinsic clearances to predict hepatic clearance. Well-stirred (WSM), parallel-tube (PTM), and dispersion (DM) models were evaluated within the liver as well as within whole-body physiologically based pharmacokinetic frameworks. It was shown that a linear combination of well-stirred and parallel-tube average liver blood concentrations accurately approximates dispersion model blood concentrations. Using a flow/permeability-limited model, a large systematic error was observed for acids and no systematic error for bases. A scaling factor that reduced interstitial fluid (ISF) plasma protein binding could greatly decrease the absolute average fold error (AAFE) for acids. Using a 1C model, a scalar to reduce plasma protein binding decreased the microsomal clearance AAFE for both acids and bases. With a permeability-limited model, only acids required this scalar. The mechanism of the apparent increased cytosolic concentrations for acids remains unknown. We also show that for hepatocyte intrinsic clearance in vitro-in vivo correlations (IVIVCs), a 1C model is mechanistically appropriate since hepatocyte clearance should represent the net clearance from ISF to elimination. A relationship was derived that uses microsomal and hepatocyte intrinsic clearance to solve for an active hepatic uptake clearance, but the results were inconclusive. Finally, the PTM model generally performed better than the WSM or DM models, with no clear advantage between microsomes and hepatocytes. SIGNIFICANCE STATEMENT: Prediction of drug clearance from microsomes or hepatocytes remains challenging. Various liver models (e.g., well-stirred, parallel-tube, and dispersion) have been mathematically incorporated into liver as well as whole-body physiologically based pharmacokinetic frameworks. Although the resulting models allow incorporation of pH partitioning, permeability, and active uptake for prediction of drug clearance, including these processes did not improve clearance predictions for both microsomes and hepatocytes.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1060-1072"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001782","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

One-compartment (1C) and permeability-limited models were used to evaluate the ability of microsomal and hepatocyte intrinsic clearances to predict hepatic clearance. Well-stirred (WSM), parallel-tube (PTM), and dispersion (DM) models were evaluated within the liver as well as within whole-body physiologically based pharmacokinetic frameworks. It was shown that a linear combination of well-stirred and parallel-tube average liver blood concentrations accurately approximates dispersion model blood concentrations. Using a flow/permeability-limited model, a large systematic error was observed for acids and no systematic error for bases. A scaling factor that reduced interstitial fluid (ISF) plasma protein binding could greatly decrease the absolute average fold error (AAFE) for acids. Using a 1C model, a scalar to reduce plasma protein binding decreased the microsomal clearance AAFE for both acids and bases. With a permeability-limited model, only acids required this scalar. The mechanism of the apparent increased cytosolic concentrations for acids remains unknown. We also show that for hepatocyte intrinsic clearance in vitro-in vivo correlations (IVIVCs), a 1C model is mechanistically appropriate since hepatocyte clearance should represent the net clearance from ISF to elimination. A relationship was derived that uses microsomal and hepatocyte intrinsic clearance to solve for an active hepatic uptake clearance, but the results were inconclusive. Finally, the PTM model generally performed better than the WSM or DM models, with no clear advantage between microsomes and hepatocytes. SIGNIFICANCE STATEMENT: Prediction of drug clearance from microsomes or hepatocytes remains challenging. Various liver models (e.g., well-stirred, parallel-tube, and dispersion) have been mathematically incorporated into liver as well as whole-body physiologically based pharmacokinetic frameworks. Although the resulting models allow incorporation of pH partitioning, permeability, and active uptake for prediction of drug clearance, including these processes did not improve clearance predictions for both microsomes and hepatocytes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用简单和渗透性受限的 PBPK 框架预测清除率:井式搅拌、分散和平行管肝脏模型的比较。
单室(1C)和渗透性限制模型用于评估微粒体和肝细胞固有清除率预测肝清除率的能力。在肝脏以及全身生理药代动力学框架内评估了井式搅拌(WSM)、平行管(PTM)和分散(DM)模型。结果表明,井式搅拌和平行管平均肝脏血药浓度的线性组合能准确地接近分散模型的血药浓度。使用流动/渗透性受限模型,观察到酸有较大的系统误差,碱无系统误差。减少间质(ISF)血浆蛋白结合的比例因子可大大降低酸的绝对平均倍误差(AAFE)。在 1C 模型中,减少血浆蛋白结合的比例因子可降低酸和碱的微粒体清除率绝对平均倍误差(AAFE)。在渗透性受限模型中,只有酸类需要这种标度。酸的细胞膜浓度明显增加的机制仍不清楚。我们还表明,对于肝细胞内在清除率体外-体内相关性(IVIVCs),1C 模型在机理上是合适的,因为肝细胞清除率应代表从 ISF 到消除的净清除率。通过微粒体和肝细胞固有清除率得出了肝脏主动摄取清除率的关系,但结果并不确定。最后,PTM 模型的表现一般优于 WSM 或 DM 模型,在微粒体和肝细胞之间没有明显的优势。意义声明 预测微粒体或肝细胞的药物清除率仍然具有挑战性。各种肝脏模型(如 WSM、PTM 和 DM)已被数学地纳入肝脏和全身 PBPK 框架。虽然由此产生的模型允许结合 pH 值分配、渗透性和活性摄取来预测药物清除率,但包括这些过程并不能改善微粒体和肝细胞的清除率预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
期刊最新文献
Absorption, Distribution, Metabolism, and Excretion of Icenticaftor (QBW251) in Healthy Male Volunteers at Steady State and In Vitro Phenotyping of Major Metabolites. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation. Quantitative Prediction of Drug-Drug Interactions Caused by CYP3A Induction Using Endogenous Biomarker 4β-Hydroxycholesterol. Utility of Common In Vitro Systems for Predicting Circulating Metabolites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1