Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model.

IF 3.4 Q2 ENDOCRINOLOGY & METABOLISM JBMR Plus Pub Date : 2024-07-04 eCollection Date: 2024-08-01 DOI:10.1093/jbmrpl/ziae085
Aung Ye Mun, Kentaro Akiyama, Ziyi Wang, Jiewen Zhang, Wakana Kitagawa, Teisaku Kohno, Ryuji Tagashira, Kei Ishibashi, Naoya Matsunaga, Tingling Zou, Mitsuaki Ono, Takuo Kuboki
{"title":"Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model.","authors":"Aung Ye Mun, Kentaro Akiyama, Ziyi Wang, Jiewen Zhang, Wakana Kitagawa, Teisaku Kohno, Ryuji Tagashira, Kei Ishibashi, Naoya Matsunaga, Tingling Zou, Mitsuaki Ono, Takuo Kuboki","doi":"10.1093/jbmrpl/ziae085","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (<i>n</i> = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80<sup>+</sup>M1, CD206<sup>+</sup>M2 (anti-inflammatory macrophages), PDGFRα<sup>+</sup>MSC, and TNF-α<sup>+</sup> cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, <i>n</i> = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm<sup>3</sup> vs 0.02 mm<sup>3</sup>, <i>p</i><.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, <i>p</i><.0001). Clodronate group showed significant reduction in mean number of CD80<sup>+</sup>, TNF-α<sup>+</sup>, PDGFRα<sup>+</sup>, and CD80<sup>+</sup>TNF-α<sup>+</sup> cells on day 5 (306.5 vs 558.8, <i>p</i><.0001; 280.5 vs 543.8, <i>p</i><.0001; 365.0 vs 633.0, <i>p</i><.0001, 29.0 vs 42.5, <i>p</i><.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, <i>p</i>=.0004; 479.3 vs 384.5, <i>p</i>=.0008; 593.0 vs 473.0, <i>p</i>=.0010, 41.0 vs 32.5, <i>p</i>=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC's immunomodulatory capacity. In vivo, <i>Clec4e</i> and <i>Gbp6</i> are involved in inflammation and bone formation. <i>Clec4e</i>, <i>Gbp6</i>, and <i>Cxcl10</i> knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity.</p>","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBMR Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jbmrpl/ziae085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC's immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在拔牙模型中,巨噬细胞通过肿瘤坏死因子α调节间充质干细胞的功能。
间充质干细胞(MSCs)和巨噬细胞共同促进损伤后的骨再生。然而,间充质干细胞与炎性巨噬细胞(M1)之间相互作用的详细机制仍不清楚。在上颌第一磨牙拔除前,使用克罗膦酸脂质体(12.5 mg/kg/只小鼠,腹腔注射)或生理盐水注射(对照组)在5周大的雌性C57BL/6J小鼠中建立了巨噬细胞缺失的拔牙模型。小鼠在拔牙后第 1、3、5、7 和 10 天处死(n = 4)。对拔牙窝(TES)的再生骨量进行评估,并对 CD80+M1、CD206+M2(抗炎巨噬细胞)、PDGFRα+间充质干细胞和 TNF-α+ 细胞进行组织化学分析。在体外,对有或没有 TNF-α 刺激(10 ng/mL,24 h,n = 3)的分离间充质干细胞进行大量 RNA 序列分析(RNA-Seq),以确定 TNF-α 刺激特异性间充质干细胞转录组。第 7 天的 micro-CT 和 HE 染色显示,第 5 天的平均骨量(氯膦酸盐 vs 对照组:0.01 mm3 vs 0.02 mm3、pp+、TNF-α+、PDGFRα+ 和 CD80+TNF-α+ 细胞)明显降低(306.5 vs 558.8,pppp=.0004;479.3 vs 384.5,p=.0008;593.0 vs 473.0,p=.0010,41.0 vs 32.5,p=.0003)。RNA-Seq分析显示,15个基因(|log2FC| > 5.0,log2TPM > 5)在TNF-α刺激后成为调节间充质干细胞免疫调节能力的候选基因。在体内,Clec4e 和 Gbp6 参与炎症和骨形成。Clec4e、Gbp6和Cxcl10的敲除增加了间充质干细胞在体外的成骨分化。在暂时性巨噬细胞耗竭后,TNF-α产生的M1巨噬细胞和间充质干细胞暂时性减少并明显恢复,这表明TNF-α在TES愈合过程中激活了间充质干细胞。体外模拟 TNF-α 对间叶干细胞的影响表明,有 15 个候选间叶干细胞基因可调节免疫调节能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JBMR Plus
JBMR Plus Medicine-Orthopedics and Sports Medicine
CiteScore
5.80
自引率
2.60%
发文量
103
审稿时长
8 weeks
期刊最新文献
High-fiber diet reduces bone formation but does not affect bone microarchitecture in type 2 diabetes individuals. Longitudinal Course of Circulating miRNAs in a Patient with Hypophosphatasia and Asfotase alfa Treatment: a Case Report In Vivo Glycation – Interplay between Oxidant and Carbonyl Stress in Bone ENPP1 enzyme replacement therapy improves ectopic calcification but does not rescue skeletal phenotype in a mouse model for craniometaphyseal dysplasia. Girk3 deletion increases osteoblast maturation and bone mass accrual in adult male mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1