M. Rumman Hossain, Andrew C. Eagar, Christopher B. Blackwood, Laura G. Leff
{"title":"Nascently generated microplastics in freshwater stream are colonized by bacterial communities from stream and riparian sources","authors":"M. Rumman Hossain, Andrew C. Eagar, Christopher B. Blackwood, Laura G. Leff","doi":"10.1002/jeq2.20602","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this study was to examine bacterial colonization of different types of microplastics through time in a freshwater ecosystem. Microplastics are persistent pollutants in aquatic ecosystems. Bacteria readily colonize microplastic surfaces and may contribute to their degradation, but the taxa involved, and their degradative abilities, differ based on factors such as microplastic chemistry, plastic age, and specific ecosystem types. Four different common types of newly manufactured microplastics, high-density polyethylene, low-density polyethylene, polypropylene, and polystyrene, were incubated for 7 weeks in a freshwater stream and sampled. Sample collection was timed to examine the development of early and late bacterial biofilm communities. Microplastics were analyzed for changes to buoyancy, weight, contact angles (an indicator of surface roughness), bacterial community composition, and the number of bacterial cells. Time was the only significant contributing factor in the development of bacterial biofilm communities on microplastic disks over the 7-week study. Notably, the <i>Comamonadaceae</i> were abundant early in the study and decreased in abundance with time, while the <i>Methylococcaceae</i> demonstrated the opposite trend. Different physicochemical properties among the various types of microplastics had only a minor effect on bacterial community compositions of biofilms growing on the microplastics. Additionally, the surfaces of all microplastic disks became rougher over time in the stream. Collectively, our results show that microplastic surfaces undergo surface modification and community succession as time progresses, regardless of microplastic type, in a freshwater stream ecosystem.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 5","pages":"577-588"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20602","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20602","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to examine bacterial colonization of different types of microplastics through time in a freshwater ecosystem. Microplastics are persistent pollutants in aquatic ecosystems. Bacteria readily colonize microplastic surfaces and may contribute to their degradation, but the taxa involved, and their degradative abilities, differ based on factors such as microplastic chemistry, plastic age, and specific ecosystem types. Four different common types of newly manufactured microplastics, high-density polyethylene, low-density polyethylene, polypropylene, and polystyrene, were incubated for 7 weeks in a freshwater stream and sampled. Sample collection was timed to examine the development of early and late bacterial biofilm communities. Microplastics were analyzed for changes to buoyancy, weight, contact angles (an indicator of surface roughness), bacterial community composition, and the number of bacterial cells. Time was the only significant contributing factor in the development of bacterial biofilm communities on microplastic disks over the 7-week study. Notably, the Comamonadaceae were abundant early in the study and decreased in abundance with time, while the Methylococcaceae demonstrated the opposite trend. Different physicochemical properties among the various types of microplastics had only a minor effect on bacterial community compositions of biofilms growing on the microplastics. Additionally, the surfaces of all microplastic disks became rougher over time in the stream. Collectively, our results show that microplastic surfaces undergo surface modification and community succession as time progresses, regardless of microplastic type, in a freshwater stream ecosystem.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.