Development of a baculoviral CRISPR/Cas9 vector system for beta-2-microglobulin knockout in human pluripotent stem cells.

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Genetics and Genomics Pub Date : 2024-08-01 DOI:10.1007/s00438-024-02167-w
Zaiying Xiang, Qiaoyuan Ye, Zihan Zhao, Naian Wang, Jinrong Li, Minghai Zou, Cia-Hin Lau, Haibao Zhu, Shu Wang, Yuanlin Ding
{"title":"Development of a baculoviral CRISPR/Cas9 vector system for beta-2-microglobulin knockout in human pluripotent stem cells.","authors":"Zaiying Xiang, Qiaoyuan Ye, Zihan Zhao, Naian Wang, Jinrong Li, Minghai Zou, Cia-Hin Lau, Haibao Zhu, Shu Wang, Yuanlin Ding","doi":"10.1007/s00438-024-02167-w","DOIUrl":null,"url":null,"abstract":"<p><p>Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02167-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发用于在人类多能干细胞中敲除 beta-2 微球蛋白的杆状病毒 CRISPR/Cas9 载体系统。
从经过基因操作的多能干细胞中衍生出低免疫原性人体细胞,为未来的移植医学和采纳性免疫疗法带来了巨大希望。破坏多能干细胞中的β-2-微球蛋白(B2M),然后将其分化为特化细胞类型,是一种很有希望获得低免疫原性细胞的方法。鉴于基于CRISPR/Cas9的基因编辑工具和杆状病毒递送系统的诱人特性,杆状病毒可以递送CRISPR/Cas9元件对B2M进行位点特异性基因编辑。在此,我们报告了用于在人类细胞中破坏 B2M 基因座的杆状病毒 CRISPR/Cas9 载体系统的开发情况。在人类胚胎干细胞(hESCs)中进行测试时,我们成功实现了 B2M 基因的敲除/剔除,导致细胞表面人类白细胞抗原 I 类表达的稳定下调。然后,在与人类外周血单核细胞的共培养中,将从 B2M 基因被破坏的 hESCs 中提取的成纤维细胞用作刺激细胞。这些成纤维细胞引发的同种免疫反应明显减少,这是由灵敏的Elispot测定法评估得出的结果。B2M 阴性的 hESCs 保持了多能性,并能在体外和体内分化成三个种系。这些发现证明了利用杆状病毒-CRISPR/Cas9系统建立B2M基因敲除多能干细胞的可行性。B2M基因敲除/剔除可充分导致低免疫原性条件,从而支持将B2M阴性细胞作为通用供体细胞用于异体细胞疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
期刊最新文献
A comprehensive genome-based analysis identifies the anti-cancerous role of the anoikis-related gene ADH1A in modulating the pathogenesis of breast cancer. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. High expression of ADAR mediated by OGT promotes chemoresistance in colorectal cancer through the A-to-I editing pathway. From cactus to crop: genomic insights of a beneficial and non-pathogenic Curtobacterium flaccumfaciens strain and the evolution of its pathosystem. Full-length transcriptome characterization and analysis of Carrizo Citrange and molecular insights into pathogen defense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1