{"title":"The promise of precision functional mapping for neuroimaging in psychiatry.","authors":"Damion V Demeter, Deanna J Greene","doi":"10.1038/s41386-024-01941-z","DOIUrl":null,"url":null,"abstract":"<p><p>Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.</p>","PeriodicalId":19143,"journal":{"name":"Neuropsychopharmacology","volume":" ","pages":"16-28"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41386-024-01941-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.
期刊介绍:
Neuropsychopharmacology is a reputable international scientific journal that serves as the official publication of the American College of Neuropsychopharmacology (ACNP). The journal's primary focus is on research that enhances our knowledge of the brain and behavior, with a particular emphasis on the molecular, cellular, physiological, and psychological aspects of substances that affect the central nervous system (CNS). It also aims to identify new molecular targets for the development of future drugs.
The journal prioritizes original research reports, but it also welcomes mini-reviews and perspectives, which are often solicited by the editorial office. These types of articles provide valuable insights and syntheses of current research trends and future directions in the field of neuroscience and pharmacology.