CRISPR perfect adaptation for robust control of cellular immune and apoptotic responses.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-09-09 DOI:10.1093/nar/gkae665
Yichi Zhang, Shuyi Zhang
{"title":"CRISPR perfect adaptation for robust control of cellular immune and apoptotic responses.","authors":"Yichi Zhang, Shuyi Zhang","doi":"10.1093/nar/gkae665","DOIUrl":null,"url":null,"abstract":"<p><p>A central challenge in the quest for precise gene regulation within mammalian cells is the development of regulatory networks that can achieve perfect adaptation-where outputs consistently return to a set baseline post-stimulus. Here, we present such a system that leverages the CRISPR activation (CRISPRa) and anti-CRISPR proteins as two antithetic elements to establish perfect adaptation in mammalian cells and dynamically regulate gene expression. We demonstrate that this system can maintain stable expression levels of target genes in the face of external perturbations, thus providing a robust platform for biological applications. The versatility of our system is further showcased through its integration with endogenous regulatory mechanisms in T cells, such as the NF-κB-mediated immune response, and its ability to program apoptosis responses for precise spatial and temporal control of cellular growth and death. This study not only advances our understanding of gene regulation in mammalian cells but also opens new avenues for therapeutic intervention, particularly in diseases characterized by dysregulated gene expression.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae665","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A central challenge in the quest for precise gene regulation within mammalian cells is the development of regulatory networks that can achieve perfect adaptation-where outputs consistently return to a set baseline post-stimulus. Here, we present such a system that leverages the CRISPR activation (CRISPRa) and anti-CRISPR proteins as two antithetic elements to establish perfect adaptation in mammalian cells and dynamically regulate gene expression. We demonstrate that this system can maintain stable expression levels of target genes in the face of external perturbations, thus providing a robust platform for biological applications. The versatility of our system is further showcased through its integration with endogenous regulatory mechanisms in T cells, such as the NF-κB-mediated immune response, and its ability to program apoptosis responses for precise spatial and temporal control of cellular growth and death. This study not only advances our understanding of gene regulation in mammalian cells but also opens new avenues for therapeutic intervention, particularly in diseases characterized by dysregulated gene expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR 完美适应对细胞免疫和凋亡反应的有力控制。
在哺乳动物细胞内寻求精确基因调控的一个核心挑战是开发能够实现完美适应的调控网络--即在刺激后输出持续回到设定的基线。在这里,我们提出了这样一个系统,它利用 CRISPR 激活(CRISPRa)蛋白和抗 CRISPR 蛋白这两个对立元素,在哺乳动物细胞中建立完美适应,并动态调控基因表达。我们证明,面对外部扰动,该系统可以维持目标基因的稳定表达水平,从而为生物应用提供了一个稳健的平台。通过与 T 细胞中的内源性调控机制(如 NF-κB 介导的免疫反应)的整合,以及对细胞凋亡反应进行编程以实现对细胞生长和死亡的精确时空控制的能力,我们的系统进一步展示了其多功能性。这项研究不仅增进了我们对哺乳动物细胞基因调控的了解,还为治疗干预开辟了新途径,尤其是针对以基因表达失调为特征的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections. EXPRESSO: a multi-omics database to explore multi-layered 3D genomic organization. GCM and gcType in 2024: comprehensive resources for microbial strains and genomic data. Genomes OnLine Database (GOLD) v.10: new features and updates. RBPWorld for exploring functions and disease associations of RNA-binding proteins across species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1