Małgorzata Marcinkowska-Swojak, Magdalena Rakoczy, Jan Podkowiński, Jurand Handschuh, Paweł Wojciechowski, Luiza Handschuh
{"title":"From Sanger to genome sequencing - an overview of DNA sequencing technologies","authors":"Małgorzata Marcinkowska-Swojak, Magdalena Rakoczy, Jan Podkowiński, Jurand Handschuh, Paweł Wojciechowski, Luiza Handschuh","doi":"10.18388/pb.2021_534","DOIUrl":null,"url":null,"abstract":"<p><p>There is no technique that would make a greater contribution to the development of genetics, molecular biology and medicine than DNA sequencing. For many years, the method based on enzymatic DNA synthesis developed by Frederic Sanger was the gold standard in this area. At the end of the 20th century, there was a dynamic development of next-generation sequencing (NGS) technologies, which ended the era of single gene analysis and initiated the era of genome sequencing. Despite fierce competition, one NGS technology has practically completely dominated the global market. In the article, we present our own review of DNA sequencing methods, starting from the Sanger method to high-throughput second- and third-generation sequencing technologies, with particular emphasis on those that have achieved commercial success. We present their short history, principles of operation, technical possibilities, applications and limitations. In the summary, we reveal how much human genome sequencing costs at the current stage of the genomic revolution and outline the prospects for further development of genomics.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"70 2","pages":"173-189"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postepy biochemii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18388/pb.2021_534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
There is no technique that would make a greater contribution to the development of genetics, molecular biology and medicine than DNA sequencing. For many years, the method based on enzymatic DNA synthesis developed by Frederic Sanger was the gold standard in this area. At the end of the 20th century, there was a dynamic development of next-generation sequencing (NGS) technologies, which ended the era of single gene analysis and initiated the era of genome sequencing. Despite fierce competition, one NGS technology has practically completely dominated the global market. In the article, we present our own review of DNA sequencing methods, starting from the Sanger method to high-throughput second- and third-generation sequencing technologies, with particular emphasis on those that have achieved commercial success. We present their short history, principles of operation, technical possibilities, applications and limitations. In the summary, we reveal how much human genome sequencing costs at the current stage of the genomic revolution and outline the prospects for further development of genomics.
对遗传学、分子生物学和医学发展贡献最大的技术莫过于 DNA 测序。多年来,弗雷德里克-桑格(Frederic Sanger)开发的基于酶法 DNA 合成的方法一直是这一领域的黄金标准。20 世纪末,新一代测序(NGS)技术蓬勃发展,结束了单基因分析时代,开启了基因组测序时代。尽管竞争激烈,但有一种 NGS 技术几乎完全占据了全球市场。在这篇文章中,我们回顾了从桑格法到高通量第二代和第三代测序技术的 DNA 测序方法,特别强调了已取得商业成功的测序方法。我们介绍了这些技术的简史、工作原理、技术可能性、应用和局限性。在总结中,我们揭示了基因组革命现阶段人类基因组测序的成本,并概述了基因组学进一步发展的前景。