Learning three-dimensional aortic root assessment based on sparse annotations.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-07-01 Epub Date: 2024-07-30 DOI:10.1117/1.JMI.11.4.044504
Johanna Brosig, Nina Krüger, Inna Khasyanova, Isaac Wamala, Matthias Ivantsits, Simon Sündermann, Jörg Kempfert, Stefan Heldmann, Anja Hennemuth
{"title":"Learning three-dimensional aortic root assessment based on sparse annotations.","authors":"Johanna Brosig, Nina Krüger, Inna Khasyanova, Isaac Wamala, Matthias Ivantsits, Simon Sündermann, Jörg Kempfert, Stefan Heldmann, Anja Hennemuth","doi":"10.1117/1.JMI.11.4.044504","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Analyzing the anatomy of the aorta and left ventricular outflow tract (LVOT) is crucial for risk assessment and planning of transcatheter aortic valve implantation (TAVI). A comprehensive analysis of the aortic root and LVOT requires the extraction of the patient-individual anatomy via segmentation. Deep learning has shown good performance on various segmentation tasks. If this is formulated as a supervised problem, large amounts of annotated data are required for training. Therefore, minimizing the annotation complexity is desirable.</p><p><strong>Approach: </strong>We propose two-dimensional (2D) cross-sectional annotation and point cloud-based surface reconstruction to train a fully automatic 3D segmentation network for the aortic root and the LVOT. Our sparse annotation scheme enables easy and fast training data generation for tubular structures such as the aortic root. From the segmentation results, we derive clinically relevant parameters for TAVI planning.</p><p><strong>Results: </strong>The proposed 2D cross-sectional annotation results in high inter-observer agreement [Dice similarity coefficient (DSC): 0.94]. The segmentation model achieves a DSC of 0.90 and an average surface distance of 0.96 mm. Our approach achieves an aortic annulus maximum diameter difference between prediction and annotation of 0.45 mm (inter-observer variance: 0.25 mm).</p><p><strong>Conclusions: </strong>The presented approach facilitates reproducible annotations. The annotations allow for training accurate segmentation models of the aortic root and LVOT. The segmentation results facilitate reproducible and quantifiable measurements for TAVI planning.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044504"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.044504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Analyzing the anatomy of the aorta and left ventricular outflow tract (LVOT) is crucial for risk assessment and planning of transcatheter aortic valve implantation (TAVI). A comprehensive analysis of the aortic root and LVOT requires the extraction of the patient-individual anatomy via segmentation. Deep learning has shown good performance on various segmentation tasks. If this is formulated as a supervised problem, large amounts of annotated data are required for training. Therefore, minimizing the annotation complexity is desirable.

Approach: We propose two-dimensional (2D) cross-sectional annotation and point cloud-based surface reconstruction to train a fully automatic 3D segmentation network for the aortic root and the LVOT. Our sparse annotation scheme enables easy and fast training data generation for tubular structures such as the aortic root. From the segmentation results, we derive clinically relevant parameters for TAVI planning.

Results: The proposed 2D cross-sectional annotation results in high inter-observer agreement [Dice similarity coefficient (DSC): 0.94]. The segmentation model achieves a DSC of 0.90 and an average surface distance of 0.96 mm. Our approach achieves an aortic annulus maximum diameter difference between prediction and annotation of 0.45 mm (inter-observer variance: 0.25 mm).

Conclusions: The presented approach facilitates reproducible annotations. The annotations allow for training accurate segmentation models of the aortic root and LVOT. The segmentation results facilitate reproducible and quantifiable measurements for TAVI planning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏注释学习三维主动脉根评估
目的:分析主动脉和左心室流出道(LVOT)的解剖结构对于经导管主动脉瓣植入术(TAVI)的风险评估和规划至关重要。要对主动脉根部和左心室流出道进行全面分析,需要通过分割提取患者的个体解剖结构。深度学习在各种分割任务中表现出了良好的性能。如果将其表述为一个有监督的问题,则需要大量标注数据进行训练。因此,最大限度地降低标注复杂度是可取的:方法:我们提出了二维(2D)横截面标注和基于点云的表面重建方法,用于训练主动脉根部和左心室出口的全自动三维分割网络。我们的稀疏标注方案可轻松快速地生成主动脉根部等管状结构的训练数据。根据分割结果,我们得出了 TAVI 计划的临床相关参数:结果:所提出的二维横截面标注方法可实现较高的观察者间一致性[戴斯相似系数(DSC):0.94]。分割模型的 DSC 为 0.90,平均表面距离为 0.96 毫米。我们的方法使主动脉环的最大直径在预测和标注之间相差 0.45 毫米(观察者间差异:0.25 毫米):结论:所提出的方法有助于进行可重复的标注。结论:所提出的方法有助于进行可重复的标注,标注结果可用于训练主动脉根部和左心室出口的精确分割模型。分割结果有助于为 TAVI 计划提供可重复、可量化的测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1