Johanna Brosig, Nina Krüger, Inna Khasyanova, Isaac Wamala, Matthias Ivantsits, Simon Sündermann, Jörg Kempfert, Stefan Heldmann, Anja Hennemuth
{"title":"Learning three-dimensional aortic root assessment based on sparse annotations.","authors":"Johanna Brosig, Nina Krüger, Inna Khasyanova, Isaac Wamala, Matthias Ivantsits, Simon Sündermann, Jörg Kempfert, Stefan Heldmann, Anja Hennemuth","doi":"10.1117/1.JMI.11.4.044504","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Analyzing the anatomy of the aorta and left ventricular outflow tract (LVOT) is crucial for risk assessment and planning of transcatheter aortic valve implantation (TAVI). A comprehensive analysis of the aortic root and LVOT requires the extraction of the patient-individual anatomy via segmentation. Deep learning has shown good performance on various segmentation tasks. If this is formulated as a supervised problem, large amounts of annotated data are required for training. Therefore, minimizing the annotation complexity is desirable.</p><p><strong>Approach: </strong>We propose two-dimensional (2D) cross-sectional annotation and point cloud-based surface reconstruction to train a fully automatic 3D segmentation network for the aortic root and the LVOT. Our sparse annotation scheme enables easy and fast training data generation for tubular structures such as the aortic root. From the segmentation results, we derive clinically relevant parameters for TAVI planning.</p><p><strong>Results: </strong>The proposed 2D cross-sectional annotation results in high inter-observer agreement [Dice similarity coefficient (DSC): 0.94]. The segmentation model achieves a DSC of 0.90 and an average surface distance of 0.96 mm. Our approach achieves an aortic annulus maximum diameter difference between prediction and annotation of 0.45 mm (inter-observer variance: 0.25 mm).</p><p><strong>Conclusions: </strong>The presented approach facilitates reproducible annotations. The annotations allow for training accurate segmentation models of the aortic root and LVOT. The segmentation results facilitate reproducible and quantifiable measurements for TAVI planning.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 4","pages":"044504"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.044504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Analyzing the anatomy of the aorta and left ventricular outflow tract (LVOT) is crucial for risk assessment and planning of transcatheter aortic valve implantation (TAVI). A comprehensive analysis of the aortic root and LVOT requires the extraction of the patient-individual anatomy via segmentation. Deep learning has shown good performance on various segmentation tasks. If this is formulated as a supervised problem, large amounts of annotated data are required for training. Therefore, minimizing the annotation complexity is desirable.
Approach: We propose two-dimensional (2D) cross-sectional annotation and point cloud-based surface reconstruction to train a fully automatic 3D segmentation network for the aortic root and the LVOT. Our sparse annotation scheme enables easy and fast training data generation for tubular structures such as the aortic root. From the segmentation results, we derive clinically relevant parameters for TAVI planning.
Results: The proposed 2D cross-sectional annotation results in high inter-observer agreement [Dice similarity coefficient (DSC): 0.94]. The segmentation model achieves a DSC of 0.90 and an average surface distance of 0.96 mm. Our approach achieves an aortic annulus maximum diameter difference between prediction and annotation of 0.45 mm (inter-observer variance: 0.25 mm).
Conclusions: The presented approach facilitates reproducible annotations. The annotations allow for training accurate segmentation models of the aortic root and LVOT. The segmentation results facilitate reproducible and quantifiable measurements for TAVI planning.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.