Rachel M B Crawford, Eleanor M Gee, Deborah W E Dupont, Brendan J Hicks, Paul A Franklin
{"title":"High water temperature significantly influences swimming performance of New Zealand migratory species.","authors":"Rachel M B Crawford, Eleanor M Gee, Deborah W E Dupont, Brendan J Hicks, Paul A Franklin","doi":"10.1093/conphys/coae047","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (<i>Galaxias maculatus</i>, <i>Galaxias brevipinnis</i> and <i>Gobiomorphus cotidianus</i>). In contrast, <i>Galaxias fasciatus</i> exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae047"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coae047","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (Galaxias maculatus, Galaxias brevipinnis and Gobiomorphus cotidianus). In contrast, Galaxias fasciatus exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.