Latent-SDE: guiding stochastic differential equations in latent space for unpaired image-to-image translation

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-08-01 DOI:10.1007/s40747-024-01566-1
Xianjie Zhang, Min Li, Yujie He, Yao Gou, Yusen Zhang
{"title":"Latent-SDE: guiding stochastic differential equations in latent space for unpaired image-to-image translation","authors":"Xianjie Zhang, Min Li, Yujie He, Yao Gou, Yusen Zhang","doi":"10.1007/s40747-024-01566-1","DOIUrl":null,"url":null,"abstract":"<p>Score-based diffusion models have shown promising results in unpaired image-to-image translation (I2I). However, the existing methods only perform unpaired I2I in pixel space, which requires high computation costs. To this end, we propose guiding stochastic differential equations in latent space (Latent-SDE) that extracts domain-specific and domain-independent features of the image in the latent space to calculate the loss and guides the inference process of a pretrained SDE in the latent space for unpaired I2I. To refine the image in the latent space, we propose a latent time-travel strategy that increases the sampling timestep. Empirically, we compare Latent-SDE to the baseline of the score-based diffusion model on three widely adopted unpaired I2I tasks under two metrics. Latent-SDE achieves state-of-the-art on Cat <span>\\(\\rightarrow \\)</span> Dog and is competitive on the other two tasks. Our code will be freely available for public use upon acceptance at https://github.com/zhangXJ147/Latent-SDE.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"356 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01566-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Score-based diffusion models have shown promising results in unpaired image-to-image translation (I2I). However, the existing methods only perform unpaired I2I in pixel space, which requires high computation costs. To this end, we propose guiding stochastic differential equations in latent space (Latent-SDE) that extracts domain-specific and domain-independent features of the image in the latent space to calculate the loss and guides the inference process of a pretrained SDE in the latent space for unpaired I2I. To refine the image in the latent space, we propose a latent time-travel strategy that increases the sampling timestep. Empirically, we compare Latent-SDE to the baseline of the score-based diffusion model on three widely adopted unpaired I2I tasks under two metrics. Latent-SDE achieves state-of-the-art on Cat \(\rightarrow \) Dog and is competitive on the other two tasks. Our code will be freely available for public use upon acceptance at https://github.com/zhangXJ147/Latent-SDE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latent-SDE:引导潜空间随机微分方程实现无配对图像到图像的平移
基于分数的扩散模型在无配对图像到图像平移(I2I)中显示出良好的效果。然而,现有方法只能在像素空间执行非配对 I2I,这需要很高的计算成本。为此,我们提出了潜在空间中的指导性随机微分方程(Latent-SDE),它能提取潜在空间中图像的特定领域和独立于领域的特征来计算损失,并指导潜在空间中预训练的 SDE 的推理过程,以实现非配对 I2I。为了完善潜空间中的图像,我们提出了一种增加采样时间步的潜时间旅行策略。在两个指标下,我们将 Latent-SDE 与基于分数的扩散模型基线在三个广泛采用的非配对 I2I 任务中进行了实证比较。Latent-SDE 在 Cat \(\rightarrow \) Dog 上达到了最先进水平,在其他两个任务上也具有竞争力。我们的代码将在 https://github.com/zhangXJ147/Latent-SDE 上被接受后免费提供给公众使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Large-scale multiobjective competitive swarm optimizer algorithm based on regional multidirectional search Towards fairness-aware multi-objective optimization Low-frequency spectral graph convolution networks with one-hop connections information for personalized tag recommendation A decentralized feedback-based consensus model considering the consistency maintenance and readability of probabilistic linguistic preference relations for large-scale group decision-making A dynamic preference recommendation model based on spatiotemporal knowledge graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1