Modification of Microstructural and Surface-Mechanical Properties of Nickel-Coated Copper by Ultrasonic Shot Peening with Emphasis on Scratch Response

J. Sivasubramanian, A. Basu
{"title":"Modification of Microstructural and Surface-Mechanical Properties of Nickel-Coated Copper by Ultrasonic Shot Peening with Emphasis on Scratch Response","authors":"J. Sivasubramanian, A. Basu","doi":"10.1007/s11661-024-07526-1","DOIUrl":null,"url":null,"abstract":"<p>The current research aims to develop a hybrid surface engineering process combining electrodeposition and ultrasonic shot peening (USP) to enhance surface-mechanical properties and coating strength. A thin nickel coating was deposited on the copper substrate through an electrodeposition process and the coating contained few microcracks and pits. The obtained coating was ultrasonically shot peened with different peening times and the number of peening shots (balls). The microstructural evolution, phase analysis, surface hardness, and scratch resistance of nickel coatings and peened coatings were characterized and discussed. The impact of peening based on duration and quantity of shots (ball), which induced grain refinement and compressive residual stress on the surface of the coating has been investigated. The multi-impact shots at a high velocity strike the coated surface and reduce the thickness of the electrodeposited nickel, creating better adhesion. The peening treatment resulted in enhancing the microhardness of the coated nickel from 123 Hv to 328 Hv. The tensile residual stress of coated nickel has been converted into compressive nature. The plastic deformation developed on the coated surface by USP and other factors lowered the coefficient of friction and enhanced the scratch resistance of the coating. Based on the result, it was established that USP has a broad and effective strengthening approach for the nickel coating deposited on soft substrate to increase its compactness and strength.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07526-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current research aims to develop a hybrid surface engineering process combining electrodeposition and ultrasonic shot peening (USP) to enhance surface-mechanical properties and coating strength. A thin nickel coating was deposited on the copper substrate through an electrodeposition process and the coating contained few microcracks and pits. The obtained coating was ultrasonically shot peened with different peening times and the number of peening shots (balls). The microstructural evolution, phase analysis, surface hardness, and scratch resistance of nickel coatings and peened coatings were characterized and discussed. The impact of peening based on duration and quantity of shots (ball), which induced grain refinement and compressive residual stress on the surface of the coating has been investigated. The multi-impact shots at a high velocity strike the coated surface and reduce the thickness of the electrodeposited nickel, creating better adhesion. The peening treatment resulted in enhancing the microhardness of the coated nickel from 123 Hv to 328 Hv. The tensile residual stress of coated nickel has been converted into compressive nature. The plastic deformation developed on the coated surface by USP and other factors lowered the coefficient of friction and enhanced the scratch resistance of the coating. Based on the result, it was established that USP has a broad and effective strengthening approach for the nickel coating deposited on soft substrate to increase its compactness and strength.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过超声波喷丸强化改变镀镍铜的微观结构和表面力学性能,重点关注划痕响应
目前的研究旨在开发一种结合电沉积和超声波喷丸强化(USP)的混合表面工程工艺,以提高表面机械性能和涂层强度。通过电沉积工艺在铜基体上沉积了一层薄薄的镍涂层,该涂层含有少量微裂纹和凹坑。获得的涂层在不同的强化时间和强化丸(球)数下进行超声喷丸强化。对镍涂层和强化涂层的微观结构演变、相分析、表面硬度和抗划伤性进行了表征和讨论。根据喷丸(球)的持续时间和数量,研究了喷丸对涂层表面晶粒细化和压缩残余应力的影响。高速的多重冲击丸撞击涂层表面,减少了电沉积镍的厚度,产生了更好的附着力。强化处理使涂层镍的显微硬度从 123 Hv 提高到 328 Hv。镀层镍的拉伸残余应力已转化为压缩应力。USP 和其他因素在涂层表面产生的塑性变形降低了摩擦系数,增强了涂层的抗划伤性。根据研究结果,USP 对沉积在软基底上的镍涂层具有广泛而有效的强化作用,可提高其致密性和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grain Refining and Cracking During Solidification Dendrite Growth in Single-Grain and Cyclic-Twinned Sn–3Ag–0.5Cu Solder Joints Remarkable Cryogenic Strength and Ductility of AISI 904L Superaustenitic Stainless Steel: A Comparative Study Eutectic Solidification Morphologies in Rapidly Solidified Hypereutectic Sn–Ag Solder Alloy The Effect of Silicon Substitution by Boron for the α-Nb5Si3: INSIGHTS into the Constitutive Properties of Nb5Si2B Through Theory and Experimental Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1