Vehicular pollution as the primary source of oxidative potential of PM2.5 in Bhubaneswar, a non-attainment city in eastern India†

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Environmental Science: Processes & Impacts Pub Date : 2024-07-31 DOI:10.1039/D4EM00150H
Subhasmita Panda, Chinmay Mallik, S. Suresh Babu, Sudhir Kumar Sharma, Tuhin Kumar Mandal, Trupti Das and R. Boopathy
{"title":"Vehicular pollution as the primary source of oxidative potential of PM2.5 in Bhubaneswar, a non-attainment city in eastern India†","authors":"Subhasmita Panda, Chinmay Mallik, S. Suresh Babu, Sudhir Kumar Sharma, Tuhin Kumar Mandal, Trupti Das and R. Boopathy","doi":"10.1039/D4EM00150H","DOIUrl":null,"url":null,"abstract":"<p >We assessed the oxidative potential (OP) of PM<small><sub>2.5</sub></small> (<em>n</em> = 230) using dithiothreitol (DTT) assay to identify the major emission sources in Bhubaneswar (20.20°N, 85.80°E), one of the non-attainment cities under the National Clean Air Program, situated on the eastern coast of India. Continuous day and night PM<small><sub>2.5</sub></small> samples were collected during periods influenced by marine airmass (MAM; April–May 2019) as well as continental airmass (CAM; October 2019–December 2019). Volume normalized DTT (DDTv) activities were approximately two times higher during CAM compared to MAM periods. In contrast, mass normalized DTT activity (DDTm) showed insignificant variations between CAM and MAM periods. This might be due to particulate organic matter, which accounted for more than one-fifth of the PM<small><sub>2.5</sub></small> mass loading and remained surprisingly invariant during the study periods. Positive matrix factorization (PMF) identified secondary aerosols (MAM: 26% and CAM: 33%) as dominant contributors to PM<small><sub>2.5</sub></small> mass in both periods. OP, is, however, dominated by vehicular emissions (21%) as identified through multiple linear regression. Conditional Bivariate Probability Function (CBPF) analysis indicated that local sources were the primary drivers for the catalytic activity of PM<small><sub>2.5</sub></small> in the study region. Additionally, stagnant meteorological conditions, combined with the chemical aging of species during regional transport of pollutants, likely enhanced redox activity of PM<small><sub>2.5</sub></small> during the CAM period. The study highlights that increasing traffic congestion is primarily responsible for adverse health outcomes in the region. Therefore, it is important to regulate mobility and vehicular movement to mitigate the hazardous impact of PM<small><sub>2.5</sub></small> in Bhubaneswar.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1716-1735"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00150h","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We assessed the oxidative potential (OP) of PM2.5 (n = 230) using dithiothreitol (DTT) assay to identify the major emission sources in Bhubaneswar (20.20°N, 85.80°E), one of the non-attainment cities under the National Clean Air Program, situated on the eastern coast of India. Continuous day and night PM2.5 samples were collected during periods influenced by marine airmass (MAM; April–May 2019) as well as continental airmass (CAM; October 2019–December 2019). Volume normalized DTT (DDTv) activities were approximately two times higher during CAM compared to MAM periods. In contrast, mass normalized DTT activity (DDTm) showed insignificant variations between CAM and MAM periods. This might be due to particulate organic matter, which accounted for more than one-fifth of the PM2.5 mass loading and remained surprisingly invariant during the study periods. Positive matrix factorization (PMF) identified secondary aerosols (MAM: 26% and CAM: 33%) as dominant contributors to PM2.5 mass in both periods. OP, is, however, dominated by vehicular emissions (21%) as identified through multiple linear regression. Conditional Bivariate Probability Function (CBPF) analysis indicated that local sources were the primary drivers for the catalytic activity of PM2.5 in the study region. Additionally, stagnant meteorological conditions, combined with the chemical aging of species during regional transport of pollutants, likely enhanced redox activity of PM2.5 during the CAM period. The study highlights that increasing traffic congestion is primarily responsible for adverse health outcomes in the region. Therefore, it is important to regulate mobility and vehicular movement to mitigate the hazardous impact of PM2.5 in Bhubaneswar.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车辆污染是印度东部非达标城市布巴内斯瓦尔 PM2.5 氧化潜能的主要来源
我们使用二硫苏糖醇(DTT)测定法评估了 PM2.5(n = 230)的氧化潜能(OP),以确定布巴内斯瓦尔(20.20°N,85.80°E)的排放源,该城市位于印度东部沿海,是国家清洁空气计划的非达标城市之一。在受海洋气团(MAM;2019 年 4 月至 5 月)和大陆气团(CAM;2019 年 10 月至 2019 年 12 月)影响期间,连续采集了昼夜 PM2.5 样本。在 CAM 期间,体积归一化 DTT(DDTv)活性是 MAM 期间的两倍。相反,质量归一化 DTT 活性(DDTm)在 CAM 和 MAM 期间的变化不明显。这可能是由于占 PM2.5 质量负荷五分之一以上的颗粒有机物在研究期间出奇地保持不变。正矩阵因式分解(PMF)确定二次气溶胶(MAM:26%,CAM:33%)是两个时期 PM2.5 质量的主要贡献者。然而,通过多元线性回归确定,车辆排放(21%)在 OP 中占主导地位。条件双变量概率函数(CBPF)分析表明,本地来源是研究区域 PM2.5 催化活性的主要驱动因素。此外,停滞的气象条件,加上污染物在区域传输过程中的化学老化,很可能在 CAM 期间增强了 PM2.5 的氧化还原活性。该研究强调,日益严重的交通拥堵是造成该地区不良健康后果的主要原因。因此,必须对流动性和车辆行驶进行监管,以减轻 PM2.5 对布巴内斯瓦尔的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
期刊最新文献
An introduction to machine learning tools for the analysis of microplastics in complex matrices. Correction: Exploring the variability of PFAS in urban sewage: a comparison of emissions in commercial versus municipal urban areas. Validation of a laboratory spray generation system and its use in a comparative study of hexamethylene diisocyanate (HDI) evaluation methods. Fluorinated aromatic PBCTF and 6:2 diPAP in bridge and traffic paints. Sorption of metal ions onto PET-derived microplastic fibres.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1