Transcriptomic analysis of the cytokinin response in industrial hemp (Cannabis sativa L.) leaves

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-29 DOI:10.1007/s13562-024-00907-y
Mengdi Yu, Yushu Chen, Junbao Zhang, Xuesong Wang, Zhongmin Jin, Shanshan Li, Lijie Liu
{"title":"Transcriptomic analysis of the cytokinin response in industrial hemp (Cannabis sativa L.) leaves","authors":"Mengdi Yu, Yushu Chen, Junbao Zhang, Xuesong Wang, Zhongmin Jin, Shanshan Li, Lijie Liu","doi":"10.1007/s13562-024-00907-y","DOIUrl":null,"url":null,"abstract":"<p>Cytokinins (CKs) not only promote the growth of female flowers in industrial hemp but also serve as plant hormones that influence leaf development and regulate various genes, including transcription factors. The molecular mechanism of cytokinin response in industrial hemp leaves remains unclear. In this study, industrial hemp Longma 5 was utilized, with 60 mg·L<sup>− 1</sup> and 120 mg·L<sup>− 1</sup> of 6-BA sprayed at the three-leaf stage, followed by transcriptome sequencing at the mature stage. 3244 DEGs were identified in the Ctrl (control) vs. B60 (60 mg·L<sup>− 1</sup> 6-BA treatment) group, including 1714 upregulated genes and 1530 downregulated genes; 7818 DEGs were identified in the Ctrl vs. B120 (120 mg·L<sup>− 1</sup> 6-BA treatment) group, including 3772 upregulated genes and 4046 downregulated genes. Further analysis showed that these DEGs were primarily enriched in pathways associated with metabolism and energy, including photosynthesis, photosynthesis-antenna protein, and phenylpropanoid biosynthesis. The CTK, auxin, ABA, GA, ETH and JA signaling pathways displayed differential gene expression under 6-BA treatment. A total of 283 transcription factors were categorized into 16 families, suggesting that CKs could enhance the growth and metabolism of industrial hemp. This study lays the groundwork for further exploring the molecular mechanisms of the CTK effect on industrial hemp.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00907-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytokinins (CKs) not only promote the growth of female flowers in industrial hemp but also serve as plant hormones that influence leaf development and regulate various genes, including transcription factors. The molecular mechanism of cytokinin response in industrial hemp leaves remains unclear. In this study, industrial hemp Longma 5 was utilized, with 60 mg·L− 1 and 120 mg·L− 1 of 6-BA sprayed at the three-leaf stage, followed by transcriptome sequencing at the mature stage. 3244 DEGs were identified in the Ctrl (control) vs. B60 (60 mg·L− 1 6-BA treatment) group, including 1714 upregulated genes and 1530 downregulated genes; 7818 DEGs were identified in the Ctrl vs. B120 (120 mg·L− 1 6-BA treatment) group, including 3772 upregulated genes and 4046 downregulated genes. Further analysis showed that these DEGs were primarily enriched in pathways associated with metabolism and energy, including photosynthesis, photosynthesis-antenna protein, and phenylpropanoid biosynthesis. The CTK, auxin, ABA, GA, ETH and JA signaling pathways displayed differential gene expression under 6-BA treatment. A total of 283 transcription factors were categorized into 16 families, suggesting that CKs could enhance the growth and metabolism of industrial hemp. This study lays the groundwork for further exploring the molecular mechanisms of the CTK effect on industrial hemp.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业大麻(Cannabis sativa L.)叶片细胞分裂素反应的转录组分析
细胞分裂素(CKs)不仅能促进工业大麻雌花的生长,还能作为植物激素影响叶片的发育并调节包括转录因子在内的各种基因。工业大麻叶片中细胞分裂素反应的分子机制仍不清楚。本研究利用工业大麻龙麻 5 号,在三叶期喷洒 60 mg-L- 1 和 120 mg-L- 1 的 6-BA,然后在成熟期进行转录组测序。在 Ctrl(对照)组与 B60(60 mg-L- 1 6-BA 处理)组中发现了 3244 个 DEGs,包括 1714 个上调基因和 1530 个下调基因;在 Ctrl 组与 B120(120 mg-L- 1 6-BA 处理)组中发现了 7818 个 DEGs,包括 3772 个上调基因和 4046 个下调基因。进一步分析表明,这些 DEGs 主要富集在与新陈代谢和能量相关的通路中,包括光合作用、光合作用-天线蛋白和苯丙类生物合成。在 6-BA 处理下,CTK、辅助素、ABA、GA、ETH 和 JA 信号通路显示出不同的基因表达。共有 283 个转录因子被归类为 16 个家族,表明 CKs 可促进工业大麻的生长和新陈代谢。这项研究为进一步探索 CTK 对工业大麻影响的分子机制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1