Amal Anwar Mishriki, Amira Karam Khalifa, Dina Anwar Ibrahim, Ghada Mohamed Abdel Zaher Hashem, Laila Ahmed Rashed, Sahar Samir Abdelrahman, Hesham M. Mahmoud
{"title":"Empagliflozin mitigates methotrexate-induced nephrotoxicity in male albino rats: insights on the crosstalk of AMPK/Nrf2 signaling pathway","authors":"Amal Anwar Mishriki, Amira Karam Khalifa, Dina Anwar Ibrahim, Ghada Mohamed Abdel Zaher Hashem, Laila Ahmed Rashed, Sahar Samir Abdelrahman, Hesham M. Mahmoud","doi":"10.1186/s43094-024-00669-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The anti-diabetic drug, empagliflozin (EMPA), has many pleiotropic actions and is challenged recently to possess renoprotective properties. This renoprotective potential is proposed to be mediated via the activation of AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. This research investigated the renoprotective potential and the mechanistic pathway of EMPA against methotrexate (MTX)-induced nephrotoxicity and evaluated the role of AMPK by utilizing an AMPK inhibitor, dorsomorphin (Dorso).</p><h3>Methods</h3><p>Thirty male Wistar rats, weighing 180–200 g, were divided equally into five groups. Group I represented the control group. Nephrotoxicity was induced in the remaining rats through the administration of a single intraperitoneal injection of MTX (20 mg/kg). Rats were then randomly assigned to: Group 2 (received MTX injection only); Group 3 (received MTX and EMPA 30 mg/kg/day); Group 4 (received MTX and Dorso 0.2 mg/kg/day), Group 5 (received MTX, Dorso, EMPA). After one week, blood samples were collected, the rats were euthanized, and renal tissues were harvested for biochemical and histomorphometric assessments.</p><h3>Results</h3><p>MTX produced a significant rise in serum creatinine and tissue MDA levels; an increase in BAX, p53, cytochrome-c expression; a reduction in Bcl2 level; and disruption of renal microarchitecture. In contrast, EMPA therapy in group 3, resulted in a significant improvement of all these parameters, correlated with significant increase in AMPK phosphorylation and Nrf2 expression. Importantly, the co-administration of Dorso, in group 5, prevented EMPA’s beneficial effects.</p><h3>Conclusion</h3><p>EMPA has a potential protective effect against MTX-induced toxicity through the activation of the AMPK/Nrf2 signaling pathway.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00669-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-024-00669-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The anti-diabetic drug, empagliflozin (EMPA), has many pleiotropic actions and is challenged recently to possess renoprotective properties. This renoprotective potential is proposed to be mediated via the activation of AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. This research investigated the renoprotective potential and the mechanistic pathway of EMPA against methotrexate (MTX)-induced nephrotoxicity and evaluated the role of AMPK by utilizing an AMPK inhibitor, dorsomorphin (Dorso).
Methods
Thirty male Wistar rats, weighing 180–200 g, were divided equally into five groups. Group I represented the control group. Nephrotoxicity was induced in the remaining rats through the administration of a single intraperitoneal injection of MTX (20 mg/kg). Rats were then randomly assigned to: Group 2 (received MTX injection only); Group 3 (received MTX and EMPA 30 mg/kg/day); Group 4 (received MTX and Dorso 0.2 mg/kg/day), Group 5 (received MTX, Dorso, EMPA). After one week, blood samples were collected, the rats were euthanized, and renal tissues were harvested for biochemical and histomorphometric assessments.
Results
MTX produced a significant rise in serum creatinine and tissue MDA levels; an increase in BAX, p53, cytochrome-c expression; a reduction in Bcl2 level; and disruption of renal microarchitecture. In contrast, EMPA therapy in group 3, resulted in a significant improvement of all these parameters, correlated with significant increase in AMPK phosphorylation and Nrf2 expression. Importantly, the co-administration of Dorso, in group 5, prevented EMPA’s beneficial effects.
Conclusion
EMPA has a potential protective effect against MTX-induced toxicity through the activation of the AMPK/Nrf2 signaling pathway.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.