Quantifying growth, erosion and dislodgement rates of farmed kelp (Saccharina latissima) to examine the carbon sequestration potential of temperate seaweed farming
{"title":"Quantifying growth, erosion and dislodgement rates of farmed kelp (Saccharina latissima) to examine the carbon sequestration potential of temperate seaweed farming","authors":"Maxine C. Canvin, Pippa J. Moore, Dan A. Smale","doi":"10.1007/s10811-024-03323-w","DOIUrl":null,"url":null,"abstract":"<p>Seaweed cultivation, including kelp species, is rapidly expanding in many regions. A widely assumed co-benefit of seaweed farming is increased local carbon sequestration rates (thereby contributing to climate change mitigation), although direct field-based measurements of carbon assimilation and release are largely lacking. We quantified growth, erosion and dislodgement rates of farmed <i>Saccharina latissima</i> in Porthallow Bay (Cornwall, UK) throughout a typical cultivation season to provide insights into the carbon sequestration potential of small-scale kelp farms. Blade elongation rates increased from ~ 1.3 cm day<sup>−1</sup> to ~ 2.3 cm day<sup>−1</sup> in March–April, before declining to 1.4 cm day<sup>−1</sup> by May. Meanwhile, erosion rates remained low, ranging from ~ 0.5 to ~ 0.8 cm day<sup>−1</sup>. Dislodgement rates decreased from 20% of plants in January–February to 5% in April–May. Rates of carbon accumulation and loss increased from January to May, related to an increase in standing stock. Conservative first-order estimates suggest that the farm captures 0.14 t C ha<sup>−1</sup> y<sup>−1</sup>, of which up to 70% is released into the environment as particulate organic carbon. Based on previous estimates of carbon burial and storage rates, the farm may sequester 0.05 t CO<sub>2</sub>e ha<sup>−1</sup> y<sup>−1</sup>. These values suggest that scaling-up European kelp farming should be motivated by other co-benefits, such as low-carbon product alternatives, job creation and potential biodiversity gains, and not be solely driven by a perceived meaningful increase in carbon sequestration. Importantly, further information needs to be obtained from a variety of cultivation sites to develop a better understanding of carbon dynamics associated with kelp farms.</p>","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03323-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seaweed cultivation, including kelp species, is rapidly expanding in many regions. A widely assumed co-benefit of seaweed farming is increased local carbon sequestration rates (thereby contributing to climate change mitigation), although direct field-based measurements of carbon assimilation and release are largely lacking. We quantified growth, erosion and dislodgement rates of farmed Saccharina latissima in Porthallow Bay (Cornwall, UK) throughout a typical cultivation season to provide insights into the carbon sequestration potential of small-scale kelp farms. Blade elongation rates increased from ~ 1.3 cm day−1 to ~ 2.3 cm day−1 in March–April, before declining to 1.4 cm day−1 by May. Meanwhile, erosion rates remained low, ranging from ~ 0.5 to ~ 0.8 cm day−1. Dislodgement rates decreased from 20% of plants in January–February to 5% in April–May. Rates of carbon accumulation and loss increased from January to May, related to an increase in standing stock. Conservative first-order estimates suggest that the farm captures 0.14 t C ha−1 y−1, of which up to 70% is released into the environment as particulate organic carbon. Based on previous estimates of carbon burial and storage rates, the farm may sequester 0.05 t CO2e ha−1 y−1. These values suggest that scaling-up European kelp farming should be motivated by other co-benefits, such as low-carbon product alternatives, job creation and potential biodiversity gains, and not be solely driven by a perceived meaningful increase in carbon sequestration. Importantly, further information needs to be obtained from a variety of cultivation sites to develop a better understanding of carbon dynamics associated with kelp farms.
期刊介绍:
The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae.
The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds.
Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.