Visual–language foundation models in medicine

Chunyu Liu, Yixiao Jin, Zhouyu Guan, Tingyao Li, Yiming Qin, Bo Qian, Zehua Jiang, Yilan Wu, Xiangning Wang, Ying Feng Zheng, Dian Zeng
{"title":"Visual–language foundation models in medicine","authors":"Chunyu Liu, Yixiao Jin, Zhouyu Guan, Tingyao Li, Yiming Qin, Bo Qian, Zehua Jiang, Yilan Wu, Xiangning Wang, Ying Feng Zheng, Dian Zeng","doi":"10.1007/s00371-024-03579-w","DOIUrl":null,"url":null,"abstract":"<p>By integrating visual and linguistic understanding, visual–language foundation models (VLFMs) have the great potential to advance the interpretation of medical data, thereby enhancing diagnostic precision, treatment planning, and patient management. We reviewed the developmental strategies of VLFMs, detailing the pretraining strategies, and subsequent application across various healthcare facets. The challenges inherent to VLFMs are described, including safeguarding data privacy amidst sensitive medical data usage, ensuring algorithmic transparency, and fostering explainability for trust in clinical decision-making. We underscored the significance of VLFMs in addressing the complexity of multimodal medical data, from visual to textual, and their potential in tasks like image-based disease diagnosis, medicine report synthesis, and longitudinal patient monitoring. It also examines the progress in VLFMs like Med-Flamingo, LLaVA-Med, and their zero-shot learning capabilities, and the exploration of parameter-efficient fine-tuning methods for efficient adaptation. This review concludes by encouraging the community to pursue these emergent and promising directions to strengthen the impact of artificial intelligence and deep learning on healthcare delivery and research.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03579-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By integrating visual and linguistic understanding, visual–language foundation models (VLFMs) have the great potential to advance the interpretation of medical data, thereby enhancing diagnostic precision, treatment planning, and patient management. We reviewed the developmental strategies of VLFMs, detailing the pretraining strategies, and subsequent application across various healthcare facets. The challenges inherent to VLFMs are described, including safeguarding data privacy amidst sensitive medical data usage, ensuring algorithmic transparency, and fostering explainability for trust in clinical decision-making. We underscored the significance of VLFMs in addressing the complexity of multimodal medical data, from visual to textual, and their potential in tasks like image-based disease diagnosis, medicine report synthesis, and longitudinal patient monitoring. It also examines the progress in VLFMs like Med-Flamingo, LLaVA-Med, and their zero-shot learning capabilities, and the exploration of parameter-efficient fine-tuning methods for efficient adaptation. This review concludes by encouraging the community to pursue these emergent and promising directions to strengthen the impact of artificial intelligence and deep learning on healthcare delivery and research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学视觉语言基础模型
通过整合视觉和语言理解,视觉语言基础模型(VLFMs)在推进医疗数据解读,从而提高诊断精确度、治疗规划和患者管理方面具有巨大潜力。我们回顾了视觉语言基础模型的发展策略,详细介绍了预培训策略以及随后在各医疗领域的应用。我们描述了 VLFMs 所面临的固有挑战,包括在使用敏感医疗数据的过程中保护数据隐私、确保算法的透明度以及提高可解释性以增强临床决策的可信度。我们强调了 VLFM 在解决从视觉到文本等多模态医疗数据的复杂性方面的重要意义,以及它们在基于图像的疾病诊断、医学报告合成和纵向患者监测等任务中的潜力。综述还探讨了 Med-Flamingo、LLaVA-Med 等 VLFM 的进展及其零点学习能力,以及为实现高效适应而对参数高效微调方法的探索。最后,本综述鼓励业界继续探索这些新兴的、有前途的方向,以加强人工智能和深度学习对医疗保健服务和研究的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1