Vertical Retrieval of AOD using SEVIRI data, Case Study: European Continent

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Measurement Techniques Pub Date : 2024-08-01 DOI:10.5194/amt-2024-105
Maryam Pashayi, Mehran Satari, Mehdi Momeni Shahraki
{"title":"Vertical Retrieval of AOD using SEVIRI data, Case Study: European Continent","authors":"Maryam Pashayi, Mehran Satari, Mehdi Momeni Shahraki","doi":"10.5194/amt-2024-105","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Accurately determining Aerosol Optical Depth (AOD) across various altitudes with sufficient spatial and temporal resolution is crucial for effective aerosol monitoring, given the significant variations over time and space. While ground-based observations provide detailed vertical profiles, satellite data are crucial for addressing spatial and temporal gaps. This study utilizes profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) to estimate vertical AOD values at 1.5, 3, 5, and 10 km layers. These estimations are achieved with spatial and temporal resolutions of 3 km × 3 km and 15 minutes, respectively, over Europe. We employed machine learning models—XGBoost (XGB) and Random Forest (RF)—trained on SEVIRI data from 2017 to 2019 for the estimations. Validation using CALIOP AOD retrievals in 2020 confirmed the reliability of our findings, emphasizing the importance of wind speed (Ws) and wind direction (Wd) in improving AOD estimation accuracy. A comparison between seasonal and annual models revealed slight variations in accuracy, leading to the selection of annual models as the preferred approach for estimating SEVIRI AOD profiles. Among the annual models, the RF model demonstrated superior performance over the XGB model at higher layers, yielding more reliable AOD estimations. Further validation using data from EARLINET stations across Europe in 2020 indicated that the XGB model achieved better agreement with EARLINET AOD profiles, with R<sup>2</sup> values of 0.81, 0.77, 0.71, and 0.56, and RMSE values of 0.03, 0.01, 0.02, and 0.005, respectively.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"8 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-2024-105","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Accurately determining Aerosol Optical Depth (AOD) across various altitudes with sufficient spatial and temporal resolution is crucial for effective aerosol monitoring, given the significant variations over time and space. While ground-based observations provide detailed vertical profiles, satellite data are crucial for addressing spatial and temporal gaps. This study utilizes profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) to estimate vertical AOD values at 1.5, 3, 5, and 10 km layers. These estimations are achieved with spatial and temporal resolutions of 3 km × 3 km and 15 minutes, respectively, over Europe. We employed machine learning models—XGBoost (XGB) and Random Forest (RF)—trained on SEVIRI data from 2017 to 2019 for the estimations. Validation using CALIOP AOD retrievals in 2020 confirmed the reliability of our findings, emphasizing the importance of wind speed (Ws) and wind direction (Wd) in improving AOD estimation accuracy. A comparison between seasonal and annual models revealed slight variations in accuracy, leading to the selection of annual models as the preferred approach for estimating SEVIRI AOD profiles. Among the annual models, the RF model demonstrated superior performance over the XGB model at higher layers, yielding more reliable AOD estimations. Further validation using data from EARLINET stations across Europe in 2020 indicated that the XGB model achieved better agreement with EARLINET AOD profiles, with R2 values of 0.81, 0.77, 0.71, and 0.56, and RMSE values of 0.03, 0.01, 0.02, and 0.005, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SEVIRI 数据垂直检索 AOD,案例研究:欧洲大陆
摘要鉴于气溶胶在时间和空间上的显著变化,以足够的空间和时间分辨率准确测定不同高度的气溶胶光学深度(AOD)对于有效监测气溶胶至关重要。地面观测可提供详细的垂直剖面图,而卫星数据则是解决时空差距的关键。本研究利用正交偏振云-气溶胶激光雷达(CALIOP)的剖面图和旋转增强可见光和红外成像仪(SEVIRI)的数据,估算 1.5、3、5 和 10 公里层的垂直 AOD 值。在欧洲,这些估算的空间和时间分辨率分别为 3 千米×3 千米和 15 分钟。我们采用了机器学习模型--XGBoost(XGB)和随机森林(RF)--在2017年至2019年的SEVIRI数据上进行训练,以进行估算。利用2020年的CALIOP AOD检索结果进行的验证证实了我们研究结果的可靠性,强调了风速(Ws)和风向(Wd)在提高AOD估算精度方面的重要性。对季节模式和年度模式进行比较后发现,两者的精度略有不同,因此选择年度模式作为估算 SEVIRI AOD 剖面的首选方法。在年度模式中,RF 模式在较高层次上的性能优于 XGB 模式,能获得更可靠的 AOD 估算结果。利用 2020 年欧洲各地 EARLINET 站的数据进行的进一步验证表明,XGB 模型与 EARLINET AOD 剖面的一致性更好,R2 值分别为 0.81、0.77、0.71 和 0.56,RMSE 值分别为 0.03、0.01、0.02 和 0.005。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
期刊最新文献
Analyzing the chemical composition, morphology and size of ice-nucleating particles by coupling a scanning electron microscope to an offline diffusion chamber Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations Advances in OH reactivity instruments for airborne field measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1