Andrej M. Savić, Marija Novičić, Vera Miler-Jerković, Olivera Djordjević, Ljubica Konstantinović
{"title":"Electrotactile BCI for Top-Down Somatosensory Training: Clinical Feasibility Trial of Online BCI Control in Subacute Stroke Patients","authors":"Andrej M. Savić, Marija Novičić, Vera Miler-Jerković, Olivera Djordjević, Ljubica Konstantinović","doi":"10.3390/bios14080368","DOIUrl":null,"url":null,"abstract":"This study investigates the feasibility of a novel brain–computer interface (BCI) device designed for sensory training following stroke. The BCI system administers electrotactile stimuli to the user’s forearm, mirroring classical sensory training interventions. Concurrently, selective attention tasks are employed to modulate electrophysiological brain responses (somatosensory event-related potentials—sERPs), reflecting cortical excitability in related sensorimotor areas. The BCI identifies attention-induced changes in the brain’s reactions to stimulation in an online manner. The study protocol assesses the feasibility of online binary classification of selective attention focus in ten subacute stroke patients. Each experimental session includes a BCI training phase for data collection and classifier training, followed by a BCI test phase to evaluate online classification of selective tactile attention based on sERP. During online classification tests, patients complete 20 repetitions of selective attention tasks with feedback on attention focus recognition. Using a single electroencephalographic channel, attention classification accuracy ranges from 70% to 100% across all patients. The significance of this novel BCI paradigm lies in its ability to quantitatively measure selective tactile attention resources throughout the therapy session, introducing a top-down approach to classical sensory training interventions based on repeated neuromuscular electrical stimulation.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/bios14080368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the feasibility of a novel brain–computer interface (BCI) device designed for sensory training following stroke. The BCI system administers electrotactile stimuli to the user’s forearm, mirroring classical sensory training interventions. Concurrently, selective attention tasks are employed to modulate electrophysiological brain responses (somatosensory event-related potentials—sERPs), reflecting cortical excitability in related sensorimotor areas. The BCI identifies attention-induced changes in the brain’s reactions to stimulation in an online manner. The study protocol assesses the feasibility of online binary classification of selective attention focus in ten subacute stroke patients. Each experimental session includes a BCI training phase for data collection and classifier training, followed by a BCI test phase to evaluate online classification of selective tactile attention based on sERP. During online classification tests, patients complete 20 repetitions of selective attention tasks with feedback on attention focus recognition. Using a single electroencephalographic channel, attention classification accuracy ranges from 70% to 100% across all patients. The significance of this novel BCI paradigm lies in its ability to quantitatively measure selective tactile attention resources throughout the therapy session, introducing a top-down approach to classical sensory training interventions based on repeated neuromuscular electrical stimulation.