{"title":"Neural calibration of hidden inhomogeneous Markov chains: information decompression in life insurance","authors":"Mark Kiermayer, Christian Weiß","doi":"10.1007/s10994-024-06551-w","DOIUrl":null,"url":null,"abstract":"<p>Markov chains play a key role in a vast number of areas, including life insurance mathematics. Standard actuarial quantities as the premium value can be interpreted as compressed, lossy information about the underlying Markov process. We introduce a method to reconstruct the underlying Markov chain given collective information of a portfolio of contracts. Our neural architecture characterizes the process in a highly explainable way by explicitly providing one-step transition probabilities. Further, we provide an intrinsic, economic model validation to inspect the quality of the information decompression. Lastly, our methodology is successfully tested for a realistic data set of German term life insurance contracts.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"22 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06551-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Markov chains play a key role in a vast number of areas, including life insurance mathematics. Standard actuarial quantities as the premium value can be interpreted as compressed, lossy information about the underlying Markov process. We introduce a method to reconstruct the underlying Markov chain given collective information of a portfolio of contracts. Our neural architecture characterizes the process in a highly explainable way by explicitly providing one-step transition probabilities. Further, we provide an intrinsic, economic model validation to inspect the quality of the information decompression. Lastly, our methodology is successfully tested for a realistic data set of German term life insurance contracts.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.