Hongwu Ye, Tingting Gao, Yong Zhou, Jiangshuai Huang
{"title":"Predictor-based Tracking Control of a Class of Series Elastic Actuators With Input Delay","authors":"Hongwu Ye, Tingting Gao, Yong Zhou, Jiangshuai Huang","doi":"10.1007/s12555-023-0467-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, tracking control of a class of series elastic actuators subject to unknown time-varying input delay and additive disturbances is investigated. To address the input delay, a novel predictor-like method is proposed in the control input which uses a predictor to compensate for the delay. Lyapunov-Krasovskii functions are applied within Lyapunov-based stability analysis to show semi-globally uniformly ultimately bounded tracking errors. The control scheme is extended to the case that the input delay is unknown and time-varying. A constant estimate of the delay is determined to establish uniformly ultimately bounded convergence of the tracking error. Numerical simulation results illustrate the performance of the developed robust controller.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"6 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0467-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, tracking control of a class of series elastic actuators subject to unknown time-varying input delay and additive disturbances is investigated. To address the input delay, a novel predictor-like method is proposed in the control input which uses a predictor to compensate for the delay. Lyapunov-Krasovskii functions are applied within Lyapunov-based stability analysis to show semi-globally uniformly ultimately bounded tracking errors. The control scheme is extended to the case that the input delay is unknown and time-varying. A constant estimate of the delay is determined to establish uniformly ultimately bounded convergence of the tracking error. Numerical simulation results illustrate the performance of the developed robust controller.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.