Krisztián Vida, Zsolt Kővári, Martin Leitzinger, Petra Odert, Katalin Oláh, Bálint Seli, Levente Kriskovics, Robert Greimel, Anna Mária Görgei
{"title":"Stellar Flares, Superflares, and Coronal Mass Ejections—Entering the Big Data Era","authors":"Krisztián Vida, Zsolt Kővári, Martin Leitzinger, Petra Odert, Katalin Oláh, Bálint Seli, Levente Kriskovics, Robert Greimel, Anna Mária Görgei","doi":"10.3390/universe10080313","DOIUrl":null,"url":null,"abstract":"Flares, sometimes accompanied by coronal mass ejections (CMEs), are the result of sudden changes in the magnetic field of stars with high energy release through magnetic reconnection, which can be observed across a wide range of the electromagnetic spectrum from radio waves to the optical range to X-rays. In our observational review, we attempt to collect some fundamental new results, which can largely be linked to the Big Data era that has arrived due to the expansion of space photometric observations over the last two decades. We list the different types of stars showing flare activity and their observation strategies and discuss how their main stellar properties relate to the characteristics of the flares (or even CMEs) they emit. Our goal is to focus, without claiming to be complete, on those results that may, in one way or another, challenge the “standard” flare model based on the solar paradigm.","PeriodicalId":48646,"journal":{"name":"Universe","volume":"65 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10080313","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Flares, sometimes accompanied by coronal mass ejections (CMEs), are the result of sudden changes in the magnetic field of stars with high energy release through magnetic reconnection, which can be observed across a wide range of the electromagnetic spectrum from radio waves to the optical range to X-rays. In our observational review, we attempt to collect some fundamental new results, which can largely be linked to the Big Data era that has arrived due to the expansion of space photometric observations over the last two decades. We list the different types of stars showing flare activity and their observation strategies and discuss how their main stellar properties relate to the characteristics of the flares (or even CMEs) they emit. Our goal is to focus, without claiming to be complete, on those results that may, in one way or another, challenge the “standard” flare model based on the solar paradigm.
UniversePhysics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍:
Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.