CVA Sensitivities, Hedging and Risk

Stéphane CrépeyUFR Mathématiques UPCité, Botao LiLPSM, Hoang NguyenIES, LPSM, Bouazza Saadeddine
{"title":"CVA Sensitivities, Hedging and Risk","authors":"Stéphane CrépeyUFR Mathématiques UPCité, Botao LiLPSM, Hoang NguyenIES, LPSM, Bouazza Saadeddine","doi":"arxiv-2407.18583","DOIUrl":null,"url":null,"abstract":"We present a unified framework for computing CVA sensitivities, hedging the\nCVA, and assessing CVA risk, using probabilistic machine learning meant as\nrefined regression tools on simulated data, validatable by low-cost companion\nMonte Carlo procedures. Various notions of sensitivities are introduced and\nbenchmarked numerically. We identify the sensitivities representing the best\npractical trade-offs in downstream tasks including CVA hedging and risk\nassessment.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a unified framework for computing CVA sensitivities, hedging the CVA, and assessing CVA risk, using probabilistic machine learning meant as refined regression tools on simulated data, validatable by low-cost companion Monte Carlo procedures. Various notions of sensitivities are introduced and benchmarked numerically. We identify the sensitivities representing the best practical trade-offs in downstream tasks including CVA hedging and risk assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CVA 敏感性、套期保值和风险
我们提出了一个计算 CVA 敏感度、对冲 CVA 和评估 CVA 风险的统一框架,使用概率机器学习作为模拟数据上的精炼回归工具,并可通过低成本的配套蒙特卡罗程序进行验证。我们引入了各种敏感性概念,并对其进行了数值基准测试。我们确定了代表下游任务(包括 CVA 对冲和风险评估)中最佳实用权衡的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1