Simulation and evaluation of ecosystem service value along the Yellow River in Henan Province, China

IF 3.3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Frontiers in Environmental Science Pub Date : 2024-07-31 DOI:10.3389/fenvs.2024.1414639
Dong Zhao, Lanbo Guo, Guolong Chen, Lijie Yan, Tingting Sun
{"title":"Simulation and evaluation of ecosystem service value along the Yellow River in Henan Province, China","authors":"Dong Zhao, Lanbo Guo, Guolong Chen, Lijie Yan, Tingting Sun","doi":"10.3389/fenvs.2024.1414639","DOIUrl":null,"url":null,"abstract":"The unprecedented growth in population and swift industrial advancements exert considerable strains on the ecosystem, particularly within medium-sized and large urban landscapes. The critical investigation into the intricate links between current and prospective land utilization, as well as the ecosystem service value (ESV), holds considerable empirical relevance for the calibration of land usage frameworks, thereby contributing to the sustainable evolution of extensive urban zones. Utilizing GlobeLand 30 data, the present research probes into the pattern of land transformation and the spatial-temporal dispersal of ESV in Henan’s Yellow River vicinity over a span from 2000 to 2020. For the enhancement of land usage alignment, a Markov-PLUS fusion model was devised to gauge three disparate ESV transition scenarios slated for 2030, namely, natural development scenario (NDS), cropland protection scenario (CPS), and ecological protection scenario (EPS). The principal determinants of land transformation within the 2000–2020 period were recognized as elevation, populace concentration, and atmospheric temperature. Amid the rapid accretion of construction land engulfing substantial cropland and grassland areas, there was an ESV diminution to the tune of 1.432 billion RMB between 2000 and 2020. The ESV’s high-value regions were discerned within relatively undisturbed ecosystem zones, with the lower-value sections identified in cropland and constructed areas, where human interventions exerted pronounced effects on the ecosystem. In accordance with the 2030 land usage simulations and analyses, in contrast to alternative scenarios, the EPS exhibited the least fluctuation in land type alterations in 2030, demonstrated the most pronounced escalation in cold spot concentration, and reached a peak agglomeration level. This underscores that the EPS not only offers a refinement in land utilization configuration but also mediates the equilibrium between economic and ecological considerations. The insights derived from this investigation afford innovative evaluative methods for spatial planning, ecological recompense, and sustainable land exploitation within large- and medium-scale urban domains.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"203 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1414639","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The unprecedented growth in population and swift industrial advancements exert considerable strains on the ecosystem, particularly within medium-sized and large urban landscapes. The critical investigation into the intricate links between current and prospective land utilization, as well as the ecosystem service value (ESV), holds considerable empirical relevance for the calibration of land usage frameworks, thereby contributing to the sustainable evolution of extensive urban zones. Utilizing GlobeLand 30 data, the present research probes into the pattern of land transformation and the spatial-temporal dispersal of ESV in Henan’s Yellow River vicinity over a span from 2000 to 2020. For the enhancement of land usage alignment, a Markov-PLUS fusion model was devised to gauge three disparate ESV transition scenarios slated for 2030, namely, natural development scenario (NDS), cropland protection scenario (CPS), and ecological protection scenario (EPS). The principal determinants of land transformation within the 2000–2020 period were recognized as elevation, populace concentration, and atmospheric temperature. Amid the rapid accretion of construction land engulfing substantial cropland and grassland areas, there was an ESV diminution to the tune of 1.432 billion RMB between 2000 and 2020. The ESV’s high-value regions were discerned within relatively undisturbed ecosystem zones, with the lower-value sections identified in cropland and constructed areas, where human interventions exerted pronounced effects on the ecosystem. In accordance with the 2030 land usage simulations and analyses, in contrast to alternative scenarios, the EPS exhibited the least fluctuation in land type alterations in 2030, demonstrated the most pronounced escalation in cold spot concentration, and reached a peak agglomeration level. This underscores that the EPS not only offers a refinement in land utilization configuration but also mediates the equilibrium between economic and ecological considerations. The insights derived from this investigation afford innovative evaluative methods for spatial planning, ecological recompense, and sustainable land exploitation within large- and medium-scale urban domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国河南省黄河沿岸生态系统服务价值的模拟与评估
人口的空前增长和工业的快速发展对生态系统造成了巨大压力,尤其是在大中型城市景观中。对当前和未来土地利用以及生态系统服务价值(ESV)之间错综复杂的联系进行批判性调查,对于校准土地利用框架具有相当大的实证意义,从而有助于大面积城市区域的可持续发展。本研究利用 GlobeLand 30 数据,探讨了河南黄河流域 2000 年至 2020 年的土地转型模式和生态系统服务价值的时空分布。为了提高土地利用的一致性,研究人员设计了一个马尔可夫-PLUS融合模型,以衡量2030年三种不同的ESV转型情景,即自然发展情景(NDS)、耕地保护情景(CPS)和生态保护情景(EPS)。2000-2020 年间土地变化的主要决定因素被认为是海拔高度、人口密度和大气温度。在建设用地迅速增加吞噬大量耕地和草地的情况下,2000 年至 2020 年间,ESV 减少了 14.32 亿元人民币。ESV 的高价值区位于生态系统相对不受干扰的区域,而低价值区则位于耕地和建设区,在这些区域,人类干预对生态系统产生了明显的影响。根据 2030 年土地利用模拟和分析,与其他方案相比,EPS 方案在 2030 年土地类型变化的波动最小,冷斑浓度的升级最明显,并达到了聚集的峰值。这突出表明,EPS 不仅完善了土地利用配置,还在经济与生态之间实现了平衡。这项调查得出的见解为大中型城市的空间规划、生态补偿和可持续土地利用提供了创新的评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Environmental Science
Frontiers in Environmental Science Environmental Science-General Environmental Science
CiteScore
4.50
自引率
8.70%
发文量
2276
审稿时长
12 weeks
期刊介绍: Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions. Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.
期刊最新文献
Spatial distribution of available phosphorus in surface road and trackway surface materials on a sheep farm in Ireland Heavy metal changes related to land use changes in a karst area: a case study in Changshun, Guizhou Province, China Long-term trends in water transparency of Tibetan Plateau lakes and the response to extreme climate events Carbon neutralization frontier tracking Occurrence, sustainable treatment technologies, potential sources, and future prospects of emerging pollutants in aquatic environments: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1