On the Exchange-Correlation Energy in DFT Scenarios

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY JETP Letters Pub Date : 2024-07-29 DOI:10.1134/S0021364024602173
A. Belhaj, S. E. Ennadifi
{"title":"On the Exchange-Correlation Energy in DFT Scenarios","authors":"A. Belhaj,&nbsp;S. E. Ennadifi","doi":"10.1134/S0021364024602173","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the considerable importance of material properties in modern condensed matter physics research, and using techniques of the <span>\\({{N}_{e}}\\)</span>-electron systems in terms of the electron density <span>\\({{n}_{{\\sigma e}}}\\left( r \\right)\\)</span> needed to obtain the ground-state energy <span>\\({{E}_{{e0}}}\\)</span> in density functional theory scenarios, we approach the exchange-correlation energy <span>\\({{E}_{{xc}}}\\left[ {{{n}_{{\\sigma e}}}(r)} \\right]\\)</span> by considering the interelectronic position corrections <span>\\(\\Delta r_{x}^{{ \\uparrow \\uparrow , \\uparrow \\downarrow }} = \\)</span> <span>\\({{\\lambda }_{x}}\\left| {\\delta {{r}^{{ \\uparrow \\uparrow }}} - \\delta {{r}^{{ \\uparrow \\downarrow }}}} \\right|\\)</span> and <span>\\(\\Delta r_{c}^{{{{e}_{i}}{{e}_{{j \\ne i}}}}} = \\)</span> <span>\\({{\\lambda }_{c}}{{\\left| {r - r{\\kern 1pt} '{\\kern 1pt} } \\right|}^{{ - {{{\\left( {{{N}_{e}} - 1} \\right)}}^{{ - 1}}}}}}\\)</span> corresponding to the spin and the Coulomb correlation effects, respectively, through the electron–electron potential energy. Exploiting such corrections, we get approximate expressions for the exchange <span>\\({{E}_{x}}\\left[ {{{n}_{{\\sigma e}}}} \\right]\\)</span> and the correlation <span>\\({{E}_{c}}\\left[ {{{n}_{{\\sigma e}}}} \\right]\\)</span> functional energies which could be interpreted in terms of magnetic and electric dipole potential energies associated with the charge density <span>\\({{n}_{{\\sigma e}}}\\left( r \\right)\\)</span> described by inverse-square potential behaviors. Based on these arguments, we expect that such obtained exchange-correlation functional energy could be considered in the local density approximation functional as an extension to frame such interelectronic effects.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"120 3","pages":"208 - 213"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024602173","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the considerable importance of material properties in modern condensed matter physics research, and using techniques of the \({{N}_{e}}\)-electron systems in terms of the electron density \({{n}_{{\sigma e}}}\left( r \right)\) needed to obtain the ground-state energy \({{E}_{{e0}}}\) in density functional theory scenarios, we approach the exchange-correlation energy \({{E}_{{xc}}}\left[ {{{n}_{{\sigma e}}}(r)} \right]\) by considering the interelectronic position corrections \(\Delta r_{x}^{{ \uparrow \uparrow , \uparrow \downarrow }} = \) \({{\lambda }_{x}}\left| {\delta {{r}^{{ \uparrow \uparrow }}} - \delta {{r}^{{ \uparrow \downarrow }}}} \right|\) and \(\Delta r_{c}^{{{{e}_{i}}{{e}_{{j \ne i}}}}} = \) \({{\lambda }_{c}}{{\left| {r - r{\kern 1pt} '{\kern 1pt} } \right|}^{{ - {{{\left( {{{N}_{e}} - 1} \right)}}^{{ - 1}}}}}}\) corresponding to the spin and the Coulomb correlation effects, respectively, through the electron–electron potential energy. Exploiting such corrections, we get approximate expressions for the exchange \({{E}_{x}}\left[ {{{n}_{{\sigma e}}}} \right]\) and the correlation \({{E}_{c}}\left[ {{{n}_{{\sigma e}}}} \right]\) functional energies which could be interpreted in terms of magnetic and electric dipole potential energies associated with the charge density \({{n}_{{\sigma e}}}\left( r \right)\) described by inverse-square potential behaviors. Based on these arguments, we expect that such obtained exchange-correlation functional energy could be considered in the local density approximation functional as an extension to frame such interelectronic effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于 DFT 方案中的交换相关能
受现代凝聚态物理研究中材料特性相当重要的启发,利用密度泛函理论情景中获得基态能量 Ee0 所需的电子密度 nσe(r) 的 Ne 电子系统技术,我们通过考虑电子间位置修正 Δ\(r_{x}^{ \uparrow \uparrow 、{{{({{N}_{e}} - 1)}}^{{ - 1}}}}}}\) 对应于自旋和库仑相关效应、分别通过电子-电子势能。利用这些修正,我们得到了交换 Ex[nσe] 和相关 Ec[nσe] 功能能的近似表达式,它们可以用反平方势行为描述的与电荷密度 nσe(r) 相关的磁偶极子势能和电偶极子势能来解释。基于这些论点,我们希望可以在局部密度近似函数中考虑这种获得的交换相关函数能,作为对这种电子间效应框架的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JETP Letters
JETP Letters 物理-物理:综合
CiteScore
2.40
自引率
30.80%
发文量
164
审稿时长
3-6 weeks
期刊介绍: All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.
期刊最新文献
Features of the Structure of Spark Channels in a Near-Cathode Region On the Equivalence of Phase and Polarization Transformations in Quantum Optics Photovoltaic Hall Effect in Two-Dimensional Fluctuating Superconductors Synchronous Detection of Nonlinear Phenomena in Opto-Acoustic Vibrations Induced in a Nanofilm by a Femtosecond Laser Pulse Quantum Accelerometry Based on a Geometric Phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1