Justin Gérard, Loïc Sablon, Jarno J. C. Huygh, Anne-Christine Da Silva, Alexandre Pohl, Christian Vérard, Michel Crucifix
{"title":"Exploring the mechanisms of Devonian oceanic anoxia: impact of ocean dynamics, palaeogeography and orbital forcing","authors":"Justin Gérard, Loïc Sablon, Jarno J. C. Huygh, Anne-Christine Da Silva, Alexandre Pohl, Christian Vérard, Michel Crucifix","doi":"10.5194/egusphere-2024-1983","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The Devonian is a warmer-than-present geological period spanning from 419 to 359 million years ago (Ma) characterized by multiple identified ocean anoxic/hypoxic events. Despite decades of extensive investigation, no consensus has been reached regarding the drivers of these anoxic events. While growing geological evidence has demonstrated a temporal correlation between astronomical forcing and anoxia during this period, underlying physical mechanisms remain unknown, hence questioning causality. Here, we perform multiple sensitivity experiments, using an Earth system model of intermediate complexity (cGENIE), to isolate the influences of specific Devonian climate and palaeogeography components on ocean oxygen levels, contributing to the better understanding of the intricate interplay of factors preconditioning the ocean to anoxia. We quantify the impact of continental configuration, ocean-atmosphere biogeochemistry (global mean oceanic PO<sub>4</sub> concentration and atmospheric pO<sub>2</sub>), climatic forcing (pCO<sub>2</sub>) and astronomical forcing on background oceanic circulation and oxygenation during the Devonian. Our results indicate that continental configuration is crucial for Devonian ocean anoxia, significantly influencing ocean circulation and oxygen levels while consistently modulating the effects of other Devonian climate components such as oceanic PO<sub>4</sub> concentration, atmospheric pO<sub>2</sub> and pCO<sub>2</sub>, and orbital forcing. The evolution of continental configuration provides a plausible explanation for the increased frequency of ocean anoxic events identified during the Middle and Late Devonian periods, as it contributed to the expansion of oxygen-depleted zones. Our simulations also show that both the decreased atmospheric pO<sub>2</sub> and increased oceanic PO<sub>2</sub> concentration exacerbate ocean anoxia, consistent with established knowledge. The variation of pCO<sub>2</sub> reveals a wide range of ocean dynamics patterns, including stable oscillations, multiple convection cells, multistability and hysteresis; all leading to significant variations of the ocean oxygen levels, therefore strongly impacting the preconditioning of the ocean to anoxia. Furthermore, multistability and important hysteresis (particularly slow ocean time response) offer different mechanisms to account for the prolonged duration of some ocean anoxic events. Finally, we found that astronomical forcing substantially impacts ocean anoxia by altering ocean circulation and oxygen solubility, with obliquity consistently emerging as the primary orbital parameter driving ocean oxygen variations.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"34 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1983","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The Devonian is a warmer-than-present geological period spanning from 419 to 359 million years ago (Ma) characterized by multiple identified ocean anoxic/hypoxic events. Despite decades of extensive investigation, no consensus has been reached regarding the drivers of these anoxic events. While growing geological evidence has demonstrated a temporal correlation between astronomical forcing and anoxia during this period, underlying physical mechanisms remain unknown, hence questioning causality. Here, we perform multiple sensitivity experiments, using an Earth system model of intermediate complexity (cGENIE), to isolate the influences of specific Devonian climate and palaeogeography components on ocean oxygen levels, contributing to the better understanding of the intricate interplay of factors preconditioning the ocean to anoxia. We quantify the impact of continental configuration, ocean-atmosphere biogeochemistry (global mean oceanic PO4 concentration and atmospheric pO2), climatic forcing (pCO2) and astronomical forcing on background oceanic circulation and oxygenation during the Devonian. Our results indicate that continental configuration is crucial for Devonian ocean anoxia, significantly influencing ocean circulation and oxygen levels while consistently modulating the effects of other Devonian climate components such as oceanic PO4 concentration, atmospheric pO2 and pCO2, and orbital forcing. The evolution of continental configuration provides a plausible explanation for the increased frequency of ocean anoxic events identified during the Middle and Late Devonian periods, as it contributed to the expansion of oxygen-depleted zones. Our simulations also show that both the decreased atmospheric pO2 and increased oceanic PO2 concentration exacerbate ocean anoxia, consistent with established knowledge. The variation of pCO2 reveals a wide range of ocean dynamics patterns, including stable oscillations, multiple convection cells, multistability and hysteresis; all leading to significant variations of the ocean oxygen levels, therefore strongly impacting the preconditioning of the ocean to anoxia. Furthermore, multistability and important hysteresis (particularly slow ocean time response) offer different mechanisms to account for the prolonged duration of some ocean anoxic events. Finally, we found that astronomical forcing substantially impacts ocean anoxia by altering ocean circulation and oxygen solubility, with obliquity consistently emerging as the primary orbital parameter driving ocean oxygen variations.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.