{"title":"Flexural performance of the negative moment region in bonded steel-wire-rope-strengthened reinforced concrete T-beams at different prestressing levels","authors":"Yanuar Haryanto, Gathot Heri Sudibyo, Laurencius Nugroho, Hsuan-Teh Hu, Ay Lie Han, Fu-Pei Hsiao, Arnie Widyaningrum, Yudi Susetyo","doi":"10.1177/13694332241268186","DOIUrl":null,"url":null,"abstract":"This work examines the performance of reinforced concrete (RC) beams strengthened using bonded steel wire rope (SWR) at various prestressing levels. The strengthening approach has, however, been applied to the flexural strengthening of RC T-beams in the negative moment region, in order to determine its advantages. For this purpose, four RC T-beams were fabricated and tested under monotonic four-point bending: one control beam (S00), one beam strengthened with non-prestressed SWR (S20), and two beams strengthened with SWR (prestressed at 10% and 20% of their ultimate tensile strength: S21 and S22). The results indicate that the strengthened beams exhibit higher load-carrying capacities. Specifically, the cracking load, yield load, and ultimate load of S20, S21, and S22 increase by 10%–30%, 30%–50%, and 50%–90%, respectively, compared to S00. Additionally, there is an improvement in stiffness and energy absorption capacity. However, these strategies may have a dual effect on the specimens, resulting in a reduction in their ductility index. Finally, the tested beams were replicated using a three-dimensional finite element model, which has proved effective in predicting the behavior of such structures and, therefore, was found to be appropriate for use in future studies.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"45 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241268186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work examines the performance of reinforced concrete (RC) beams strengthened using bonded steel wire rope (SWR) at various prestressing levels. The strengthening approach has, however, been applied to the flexural strengthening of RC T-beams in the negative moment region, in order to determine its advantages. For this purpose, four RC T-beams were fabricated and tested under monotonic four-point bending: one control beam (S00), one beam strengthened with non-prestressed SWR (S20), and two beams strengthened with SWR (prestressed at 10% and 20% of their ultimate tensile strength: S21 and S22). The results indicate that the strengthened beams exhibit higher load-carrying capacities. Specifically, the cracking load, yield load, and ultimate load of S20, S21, and S22 increase by 10%–30%, 30%–50%, and 50%–90%, respectively, compared to S00. Additionally, there is an improvement in stiffness and energy absorption capacity. However, these strategies may have a dual effect on the specimens, resulting in a reduction in their ductility index. Finally, the tested beams were replicated using a three-dimensional finite element model, which has proved effective in predicting the behavior of such structures and, therefore, was found to be appropriate for use in future studies.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.