First Principles Investigations on the Carbon‐Related Defects in Silicon

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Physica Status Solidi B-basic Solid State Physics Pub Date : 2024-07-31 DOI:10.1002/pssb.202400254
Zhongyan Ouyang, Xiaodong Xu, Chengrui Che, Gewei Zhang, Tao Ying, Weiqi Li, Jianqun Yang, Xingji Li
{"title":"First Principles Investigations on the Carbon‐Related Defects in Silicon","authors":"Zhongyan Ouyang, Xiaodong Xu, Chengrui Che, Gewei Zhang, Tao Ying, Weiqi Li, Jianqun Yang, Xingji Li","doi":"10.1002/pssb.202400254","DOIUrl":null,"url":null,"abstract":"Defect identification for unintentionally induced defects and radiation‐implemented defects always attracts great attention in semiconductor materials. Recent advances in carbon‐implemented single‐photon emitters in silicon urgently require the accurate identification of defect structures to reveal transition mechanisms. Using hybrid functional with finite size correction, we investigate the charge and optical transitions of carbon‐related defects, including C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, C<jats:sub>Si</jats:sub>, Si<jats:sub>i</jats:sub>C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, and C<jats:sub>i</jats:sub>. Except for C<jats:sub>i</jats:sub>, other defects present the negative‐U feature in the charge transition process. C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> tend to perform p‐type conductivity with the electron capture transition close to the valence band, of which transition level <jats:italic>ε</jats:italic> (0/−1) is 0.30 eV for C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and <jats:italic>ε</jats:italic> (+1/−2) is 0.34 eV for V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>. C<jats:sub>Si</jats:sub> and Si<jats:sub>i</jats:sub>C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> present a bipolar doping character, and C<jats:sub>Si</jats:sub> tends to capture holes with transition <jats:italic>ε</jats:italic> (0/+2) = 0.10 eV. The optical transitions that typically emit or absorb light in the telecom optical wavelength bands are identified in these defects in terms of band edge recombination. The zero‐phonon lines of optical transitions of <jats:italic>ε</jats:italic> (+2/+1) for V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and C<jats:sub>i</jats:sub> are consistent with a previous experiment involving single‐photon emitters. The findings are helpful to understand the performance degradation of silicon devices and provide a reference for identifying the structure of carbon‐related defects in silicon.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"48 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400254","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Defect identification for unintentionally induced defects and radiation‐implemented defects always attracts great attention in semiconductor materials. Recent advances in carbon‐implemented single‐photon emitters in silicon urgently require the accurate identification of defect structures to reveal transition mechanisms. Using hybrid functional with finite size correction, we investigate the charge and optical transitions of carbon‐related defects, including CSiCSi, VSiCSi, CSi, SiiCSiCSi, and Ci. Except for Ci, other defects present the negative‐U feature in the charge transition process. CSiCSi and VSiCSi tend to perform p‐type conductivity with the electron capture transition close to the valence band, of which transition level ε (0/−1) is 0.30 eV for CSiCSi and ε (+1/−2) is 0.34 eV for VSiCSi. CSi and SiiCSiCSi present a bipolar doping character, and CSi tends to capture holes with transition ε (0/+2) = 0.10 eV. The optical transitions that typically emit or absorb light in the telecom optical wavelength bands are identified in these defects in terms of band edge recombination. The zero‐phonon lines of optical transitions of ε (+2/+1) for VSiCSi and Ci are consistent with a previous experiment involving single‐photon emitters. The findings are helpful to understand the performance degradation of silicon devices and provide a reference for identifying the structure of carbon‐related defects in silicon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅碳相关缺陷的第一原理研究
在半导体材料领域,无意诱导缺陷和辐射诱导缺陷的识别一直备受关注。最近在硅碳单光子发射器方面取得的进展迫切需要准确识别缺陷结构以揭示其转变机制。利用有限尺寸校正的混合函数,我们研究了碳相关缺陷的电荷和光学转变,包括 CSiCSi、VSiCSi、CSi、SiiCSiCSi 和 Ci。除 Ci 外,其他缺陷在电荷转换过程中均呈现负 U 特性。CSiCSi 和 VSiCSi 倾向于 p 型导电,电子捕获转变接近价带,其中 CSiCSi 的转变电平ε(0/-1)为 0.30 eV,VSiCSi 的转变电平ε(+1/-2)为 0.34 eV。CSi 和 SiiCSiCSi 具有双极掺杂特性,CSi 倾向于俘获空穴,其转变ε (0/+2) = 0.10 eV。在这些缺陷中,通常在电信光学波段发射或吸收光的光学转变是通过带边重组来确定的。VSiCSi 和 Ci 的光学转变 ε (+2/+1) 的零光子线与之前涉及单光子发射器的实验一致。这些发现有助于理解硅器件的性能退化,并为确定硅中碳相关缺陷的结构提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
期刊最新文献
Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond Tip‐Enhanced Raman Spectroscopy Coherence Length of 2D Materials: An Application to Graphene Magnetic Anisotropy of Cr2Te3: Competition between Surface and Middle Layers Progress in Non‐equilibrium Green's Functions VIII (PNGF VIII) Half‐Metallic Ferromagnetism in 2D Janus Monolayers: Mn2GeX (X = As, Sb)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1