Zhongyan Ouyang, Xiaodong Xu, Chengrui Che, Gewei Zhang, Tao Ying, Weiqi Li, Jianqun Yang, Xingji Li
{"title":"First Principles Investigations on the Carbon‐Related Defects in Silicon","authors":"Zhongyan Ouyang, Xiaodong Xu, Chengrui Che, Gewei Zhang, Tao Ying, Weiqi Li, Jianqun Yang, Xingji Li","doi":"10.1002/pssb.202400254","DOIUrl":null,"url":null,"abstract":"Defect identification for unintentionally induced defects and radiation‐implemented defects always attracts great attention in semiconductor materials. Recent advances in carbon‐implemented single‐photon emitters in silicon urgently require the accurate identification of defect structures to reveal transition mechanisms. Using hybrid functional with finite size correction, we investigate the charge and optical transitions of carbon‐related defects, including C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, C<jats:sub>Si</jats:sub>, Si<jats:sub>i</jats:sub>C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, and C<jats:sub>i</jats:sub>. Except for C<jats:sub>i</jats:sub>, other defects present the negative‐U feature in the charge transition process. C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> tend to perform p‐type conductivity with the electron capture transition close to the valence band, of which transition level <jats:italic>ε</jats:italic> (0/−1) is 0.30 eV for C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and <jats:italic>ε</jats:italic> (+1/−2) is 0.34 eV for V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>. C<jats:sub>Si</jats:sub> and Si<jats:sub>i</jats:sub>C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> present a bipolar doping character, and C<jats:sub>Si</jats:sub> tends to capture holes with transition <jats:italic>ε</jats:italic> (0/+2) = 0.10 eV. The optical transitions that typically emit or absorb light in the telecom optical wavelength bands are identified in these defects in terms of band edge recombination. The zero‐phonon lines of optical transitions of <jats:italic>ε</jats:italic> (+2/+1) for V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and C<jats:sub>i</jats:sub> are consistent with a previous experiment involving single‐photon emitters. The findings are helpful to understand the performance degradation of silicon devices and provide a reference for identifying the structure of carbon‐related defects in silicon.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"48 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400254","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Defect identification for unintentionally induced defects and radiation‐implemented defects always attracts great attention in semiconductor materials. Recent advances in carbon‐implemented single‐photon emitters in silicon urgently require the accurate identification of defect structures to reveal transition mechanisms. Using hybrid functional with finite size correction, we investigate the charge and optical transitions of carbon‐related defects, including CSiCSi, VSiCSi, CSi, SiiCSiCSi, and Ci. Except for Ci, other defects present the negative‐U feature in the charge transition process. CSiCSi and VSiCSi tend to perform p‐type conductivity with the electron capture transition close to the valence band, of which transition level ε (0/−1) is 0.30 eV for CSiCSi and ε (+1/−2) is 0.34 eV for VSiCSi. CSi and SiiCSiCSi present a bipolar doping character, and CSi tends to capture holes with transition ε (0/+2) = 0.10 eV. The optical transitions that typically emit or absorb light in the telecom optical wavelength bands are identified in these defects in terms of band edge recombination. The zero‐phonon lines of optical transitions of ε (+2/+1) for VSiCSi and Ci are consistent with a previous experiment involving single‐photon emitters. The findings are helpful to understand the performance degradation of silicon devices and provide a reference for identifying the structure of carbon‐related defects in silicon.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.