Spatial verification of global precipitation forecasts

Gregor Skok, Llorenç Lledó
{"title":"Spatial verification of global precipitation forecasts","authors":"Gregor Skok, Llorenç Lledó","doi":"arxiv-2407.20624","DOIUrl":null,"url":null,"abstract":"Spatial verification of global high-resolution weather forecasts remains a\nconsiderable challenge. Most existing spatial verification techniques either do\nnot properly account for the non-planar geometry of a global domain or their\ncomputation complexity becomes too large. We present an adaptation of the\nrecently developed Precipitation Attribution Distance (PAD) metric, designed\nfor verifying precipitation, enabling its use on the Earth's spherical\ngeometry. PAD estimates the magnitude of location errors in the forecasts and\nis related to the mathematical theory of Optimal Transport as it provides a\nclose upper bound for the Wasserstein distance. The method is fast and flexible\nwith time complexity $O(n \\log(n))$. Its behavior is analyzed using a set of\nidealized cases and 7 years of operational global high-resolution deterministic\n6-hourly precipitation forecasts from the Integrated Forecasting System (IFS)\nof the European Centre for Medium-Range Weather Forecasts. The summary results\nfor the whole period show how location errors in the IFS model grow steadily\nwith increasing lead time for all analyzed regions. Moreover, by examining the\ntime evolution of the results, we can determine the trends in the score's value\nand identify the regions where there is a statistically significant improvement\n(or worsening) of the forecast performance. The results can also be analyzed\nseparately for different intensities of precipitation. Overall, the PAD\nprovides meaningful results for estimating location errors in global\nhigh-resolution precipitation forecasts at an affordable computational cost.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial verification of global high-resolution weather forecasts remains a considerable challenge. Most existing spatial verification techniques either do not properly account for the non-planar geometry of a global domain or their computation complexity becomes too large. We present an adaptation of the recently developed Precipitation Attribution Distance (PAD) metric, designed for verifying precipitation, enabling its use on the Earth's spherical geometry. PAD estimates the magnitude of location errors in the forecasts and is related to the mathematical theory of Optimal Transport as it provides a close upper bound for the Wasserstein distance. The method is fast and flexible with time complexity $O(n \log(n))$. Its behavior is analyzed using a set of idealized cases and 7 years of operational global high-resolution deterministic 6-hourly precipitation forecasts from the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts. The summary results for the whole period show how location errors in the IFS model grow steadily with increasing lead time for all analyzed regions. Moreover, by examining the time evolution of the results, we can determine the trends in the score's value and identify the regions where there is a statistically significant improvement (or worsening) of the forecast performance. The results can also be analyzed separately for different intensities of precipitation. Overall, the PAD provides meaningful results for estimating location errors in global high-resolution precipitation forecasts at an affordable computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球降水预报的空间验证
全球高分辨率天气预报的空间验证仍然是一项艰巨的挑战。大多数现有的空间验证技术要么没有正确考虑全球域的非平面几何,要么计算复杂度过高。我们对最近开发的降水归因距离(PAD)指标进行了调整,旨在验证降水,使其能够用于地球的球形几何。PAD 可估算预报中位置误差的大小,并与最优传输数学理论相关,因为它为 Wasserstein 距离提供了一个接近的上限。该方法快速灵活,时间复杂度为 $O(n\log(n))$。利用一组理想化案例和欧洲中期天气预报中心综合预报系统(IFS)7 年的全球高分辨率确定性 6 小时降水预报,对该方法的行为进行了分析。整个期间的汇总结果显示,IFS 模型中的位置误差随着所有分析区域的前置时间增加而稳定增长。此外,通过研究结果的时间变化,我们可以确定分数值的变化趋势,并确定哪些地区的预报性能在统计上有显著改善(或恶化)。还可以对不同降水强度的结果进行单独分析。总之,PAD 以可承受的计算成本为估计全球高分辨率降水预报的位置误差提供了有意义的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1