Super Resolution for Renewable Energy Resource Data With Wind From Reanalysis Data (Sup3rWind) and Application to Ukraine

Brandon N. Benton, Grant Buster, Pavlo Pinchuk, Andrew Glaws, Ryan N. King, Galen Maclaurin, Ilya Chernyakhovskiy
{"title":"Super Resolution for Renewable Energy Resource Data With Wind From Reanalysis Data (Sup3rWind) and Application to Ukraine","authors":"Brandon N. Benton, Grant Buster, Pavlo Pinchuk, Andrew Glaws, Ryan N. King, Galen Maclaurin, Ilya Chernyakhovskiy","doi":"arxiv-2407.19086","DOIUrl":null,"url":null,"abstract":"With an increasing share of the electricity grid relying on wind to provide\ngenerating capacity and energy, there is an expanding global need for\nhistorically accurate high-resolution wind data. Conventional downscaling\nmethods for generating these data have a high computational burden and require\nextensive tuning for historical accuracy. In this work, we present a novel deep\nlearning-based spatiotemporal downscaling method, using generative adversarial\nnetworks (GANs), for generating historically accurate high-resolution wind\nresource data from the European Centre for Medium-Range Weather Forecasting\nReanalysis version 5 data (ERA5). We achieve results comparable in historical\naccuracy and spatiotemporal variability to conventional downscaling by training\na GAN model with ERA5 low-resolution input and high-resolution targets from the\nWind Integration National Dataset, while reducing computational costs over\ndynamical downscaling by two orders of magnitude. Spatiotemporal\ncross-validation shows low error and high correlations with observations and\nexcellent agreement with holdout data across distributions of physical metrics.\nWe apply this approach to downscale 30-km hourly ERA5 data to 2-km 5-minute\nwind data for January 2000 through December 2023 at multiple hub heights over\nEastern Europe. Uncertainty is estimated over the period with observational\ndata by additionally downscaling the members of the European Centre for\nMedium-Range Weather Forecasting Ensemble of Data Assimilations. Comparisons\nagainst observational data from the Meteorological Assimilation Data Ingest\nSystem and multiple wind farms show comparable performance to the CONUS\nvalidation. This 24-year data record is the first member of the super\nresolution for renewable energy resource data with wind from reanalysis data\ndataset (Sup3rWind).","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With an increasing share of the electricity grid relying on wind to provide generating capacity and energy, there is an expanding global need for historically accurate high-resolution wind data. Conventional downscaling methods for generating these data have a high computational burden and require extensive tuning for historical accuracy. In this work, we present a novel deep learning-based spatiotemporal downscaling method, using generative adversarial networks (GANs), for generating historically accurate high-resolution wind resource data from the European Centre for Medium-Range Weather Forecasting Reanalysis version 5 data (ERA5). We achieve results comparable in historical accuracy and spatiotemporal variability to conventional downscaling by training a GAN model with ERA5 low-resolution input and high-resolution targets from the Wind Integration National Dataset, while reducing computational costs over dynamical downscaling by two orders of magnitude. Spatiotemporal cross-validation shows low error and high correlations with observations and excellent agreement with holdout data across distributions of physical metrics. We apply this approach to downscale 30-km hourly ERA5 data to 2-km 5-minute wind data for January 2000 through December 2023 at multiple hub heights over Eastern Europe. Uncertainty is estimated over the period with observational data by additionally downscaling the members of the European Centre for Medium-Range Weather Forecasting Ensemble of Data Assimilations. Comparisons against observational data from the Meteorological Assimilation Data Ingest System and multiple wind farms show comparable performance to the CONUS validation. This 24-year data record is the first member of the super resolution for renewable energy resource data with wind from reanalysis data dataset (Sup3rWind).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再分析数据风能可再生能源资源数据超级分辨率(Sup3rWind)及在乌克兰的应用
随着越来越多的电网依赖风力提供发电能力和能源,全球对历史上精确的高分辨率风力数据的需求不断扩大。生成这些数据的传统降尺度方法计算负担很重,而且需要进行大量调整才能达到历史精度。在这项工作中,我们提出了一种新颖的基于深度学习的时空降尺度方法,利用生成对抗网络(GANs),从欧洲中期天气预报分析中心第 5 版数据(ERA5)中生成历史上准确的高分辨率风资源数据。我们利用ERA5的低分辨率输入和国家风资源整合数据集的高分辨率目标来训练一个GAN模型,在历史精确度和时空变异性方面取得了与传统降尺度相当的结果,同时将计算成本比动态降尺度降低了两个数量级。时空交叉验证结果表明,在物理指标分布方面,与观测数据的误差小、相关性高,与保留数据的一致性极佳。我们将这种方法应用于将 2000 年 1 月至 2023 年 12 月东欧多个枢纽高度的 30 千米 ERA5 小时数据降尺度为 2 千米 5 分钟风数据。通过对欧洲中程天气预报中心的数据同化组合成员进行额外降尺度,利用观测数据估算了这一时期的不确定性。与来自气象同化数据摄取系统和多个风电场的观测数据进行比较后发现,其性能与 CONUS 验证结果相当。该 24 年数据记录是可再生能源资源数据与再分析数据集风的超分辨率(Sup3rWind)的第一个成员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1