{"title":"Hybrid game theoretic strategy for optimal relay selection in energy harvesting cognitive radio network","authors":"Shalley Bakshi, Surbhi Sharma, Rajesh Khanna","doi":"10.1002/dac.5935","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Relay selection plays a crucial role in enhancing the performance of wireless networks particularly in the context of cognitive radio (CR) systems with energy harvesters. In this paper, we propose a novel approach, namely, CGAPSO Shapley, for the best relay selection while simultaneously optimizing the parameters of signal-to-interference-plus-noise ratio (SINR), throughput, and outage probability. The CGAPSO Shapley algorithm combines the Shapley value, a cooperative game theory concept, with cellular genetic algorithm particle swarm optimization (CGAPSO) to achieve effective and efficient optimization of relay selection. The CGAPSO framework provides a hybrid structure that integrates cellular genetic algorithm (CGA) and particle swarm optimization (PSO), enabling simultaneous evolution of the population and particles within cells. The incorporation of the Shapley value and the hybrid CGAPSO framework enables effective exploration of the solution space and provides decision-makers with comprehensive insights for relay selection. By utilizing the Shapley value, we assign weights to the relay nodes based on their contributions to the overall optimization objectives, considering their CR capabilities and energy harvesting capabilities. Some benchmark test functions are used to compare the hybrid algorithm with both the standard CGAPSO, Particle swarm optimization gravitational search algorithm (PSOGSA) and PSO algorithms in evolving best solution. The results show the hybrid algorithm possesses a better capability to escape from local optimums with faster convergence than the standard algorithms. The novel CGAPSO Shapley approach achieves an outage probability of 0.323324, marking a significant improvement of 60% over the outage probability achieved with conventional approach.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 17","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5935","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Relay selection plays a crucial role in enhancing the performance of wireless networks particularly in the context of cognitive radio (CR) systems with energy harvesters. In this paper, we propose a novel approach, namely, CGAPSO Shapley, for the best relay selection while simultaneously optimizing the parameters of signal-to-interference-plus-noise ratio (SINR), throughput, and outage probability. The CGAPSO Shapley algorithm combines the Shapley value, a cooperative game theory concept, with cellular genetic algorithm particle swarm optimization (CGAPSO) to achieve effective and efficient optimization of relay selection. The CGAPSO framework provides a hybrid structure that integrates cellular genetic algorithm (CGA) and particle swarm optimization (PSO), enabling simultaneous evolution of the population and particles within cells. The incorporation of the Shapley value and the hybrid CGAPSO framework enables effective exploration of the solution space and provides decision-makers with comprehensive insights for relay selection. By utilizing the Shapley value, we assign weights to the relay nodes based on their contributions to the overall optimization objectives, considering their CR capabilities and energy harvesting capabilities. Some benchmark test functions are used to compare the hybrid algorithm with both the standard CGAPSO, Particle swarm optimization gravitational search algorithm (PSOGSA) and PSO algorithms in evolving best solution. The results show the hybrid algorithm possesses a better capability to escape from local optimums with faster convergence than the standard algorithms. The novel CGAPSO Shapley approach achieves an outage probability of 0.323324, marking a significant improvement of 60% over the outage probability achieved with conventional approach.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.