Artificial intelligence and machine learning in optics: tutorial

Ksenia Yadav, Serge Bidnyk, Ashok Balakrishnan
{"title":"Artificial intelligence and machine learning in optics: tutorial","authors":"Ksenia Yadav, Serge Bidnyk, Ashok Balakrishnan","doi":"10.1364/josab.525182","DOIUrl":null,"url":null,"abstract":"Across the spectrum of scientific inquiry and practical applications, the emergence of artificial intelligence (AI) and machine learning (ML) has comprehensively revolutionized problem-solving methodologies. This tutorial explores key aspects of AI/ML and their remarkable role in augmenting the capabilities of optics and photonics technologies. Beginning with fundamental definitions and paradigms, the tutorial progresses to classical machine learning algorithms, with examples employing support vector machines and random forests. Extensive discussion of deep learning encompasses the backpropagation algorithm and artificial neural networks, with examples demonstrating the applications of dense and convolutional neural networks. Data augmentation and transfer learning are examined next as effective strategies for handling scenarios with limited datasets. Finally, the necessity of alleviating the burden of data collection and labeling is discussed, motivating the investigation of unsupervised and semi-supervised learning strategies as well as the utilization of reinforcement learning. By providing a structured exploration of AI/ML techniques, this tutorial equips researchers with the essential tools to begin leveraging AI’s transformative potential within the expansive realm of optics and photonics.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.525182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Across the spectrum of scientific inquiry and practical applications, the emergence of artificial intelligence (AI) and machine learning (ML) has comprehensively revolutionized problem-solving methodologies. This tutorial explores key aspects of AI/ML and their remarkable role in augmenting the capabilities of optics and photonics technologies. Beginning with fundamental definitions and paradigms, the tutorial progresses to classical machine learning algorithms, with examples employing support vector machines and random forests. Extensive discussion of deep learning encompasses the backpropagation algorithm and artificial neural networks, with examples demonstrating the applications of dense and convolutional neural networks. Data augmentation and transfer learning are examined next as effective strategies for handling scenarios with limited datasets. Finally, the necessity of alleviating the burden of data collection and labeling is discussed, motivating the investigation of unsupervised and semi-supervised learning strategies as well as the utilization of reinforcement learning. By providing a structured exploration of AI/ML techniques, this tutorial equips researchers with the essential tools to begin leveraging AI’s transformative potential within the expansive realm of optics and photonics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学中的人工智能和机器学习:教程
在科学探索和实际应用领域,人工智能(AI)和机器学习(ML)的出现全面革新了解决问题的方法。本教程探讨人工智能/机器学习的关键方面,以及它们在增强光学和光子学技术能力方面的显著作用。教程从基本定义和范例开始,以支持向量机和随机森林为例,介绍了经典的机器学习算法。对深度学习的广泛讨论包括反向传播算法和人工神经网络,并举例说明密集神经网络和卷积神经网络的应用。接下来研究了数据增强和迁移学习,它们是处理数据集有限情况的有效策略。最后,讨论了减轻数据收集和标注负担的必要性,从而激发了对无监督和半监督学习策略的研究以及对强化学习的利用。通过对人工智能/ML 技术的结构化探索,本教程为研究人员提供了在光学和光子学的广阔领域开始利用人工智能变革潜力的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Wireless Transmission Based on Microwave Digital Coding Metasurfaces Real-time monitoring the dynamics of Brillouin fiber lasers with random feedback Design and Experimental Demonstration of a High-Performance All-Silicon Transverse Magnetic Polarizer using tilted-elliptical-hole arrays Optical shaping self-mixing interferometry with neural network for displacement measurement All semiconductor based systems for quantum gravity gradiometry experiments in space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1