{"title":"Jaynes–Cummings model breaks down when the cavity geometry significantly reduces free-space emission","authors":"Martin Blaha, Arno Rauschenbeutel, Jürgen Volz","doi":"10.1364/josab.522498","DOIUrl":null,"url":null,"abstract":"Strong coupling between a single resonator mode and a single quantum emitter is key to a plethora of experiments and applications in quantum science and technology and is commonly described by means of the Jaynes–Cummings model. Here, we show that the Jaynes–Cummings model only applies when the cavity does not significantly change the emitter’s decay rate into free-space. Most notably, the predictions made by the Jaynes–Cummings model become increasingly wrong when approaching the ideal emitter-resonator systems with no free-space decay channels. We present a Hamiltonian that provides, within the validity range of the rotating wave approximation, a correct theoretical description that applies to all regimes. As minimizing the coupling to free-space modes is paramount for many cavity-based applications, a correct description of strong light-matter interaction is therefore crucial for developing and optimizing quantum protocols.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.522498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Strong coupling between a single resonator mode and a single quantum emitter is key to a plethora of experiments and applications in quantum science and technology and is commonly described by means of the Jaynes–Cummings model. Here, we show that the Jaynes–Cummings model only applies when the cavity does not significantly change the emitter’s decay rate into free-space. Most notably, the predictions made by the Jaynes–Cummings model become increasingly wrong when approaching the ideal emitter-resonator systems with no free-space decay channels. We present a Hamiltonian that provides, within the validity range of the rotating wave approximation, a correct theoretical description that applies to all regimes. As minimizing the coupling to free-space modes is paramount for many cavity-based applications, a correct description of strong light-matter interaction is therefore crucial for developing and optimizing quantum protocols.