SSPACE Astrobiology Payload-1 (SAP-1)

A Lokaveer, Thomas Anjana, Maliyekkal Yasir, S Yogahariharan, Akash Dewangan, Saurabh Kishor Mahajan, Sakshi Aravind Tembhurne, Gunja Subhash Gupta, Devashish Bhalla, Anantha Datta Dhruva, Aloke Kumar, Koushik Viswanathan, Vikram Khaire, Anand Narayanan, Priyadarshnam Hari
{"title":"SSPACE Astrobiology Payload-1 (SAP-1)","authors":"A Lokaveer, Thomas Anjana, Maliyekkal Yasir, S Yogahariharan, Akash Dewangan, Saurabh Kishor Mahajan, Sakshi Aravind Tembhurne, Gunja Subhash Gupta, Devashish Bhalla, Anantha Datta Dhruva, Aloke Kumar, Koushik Viswanathan, Vikram Khaire, Anand Narayanan, Priyadarshnam Hari","doi":"arxiv-2407.21183","DOIUrl":null,"url":null,"abstract":"The SSPACE Astrobiology Payload (SAP) series, starting with the SAP-1 project\nis designed to conduct in-situ microbiology experiments in low earth orbit.\nThis payload series aims to understand the behaviour of microbial organisms in\nspace, particularly those critical for human health, and the corresponding\neffects due to microgravity and solar/galactic radiation. SAP-1 focuses on\nstudying Bacillus clausii and Bacillus coagulans, bacteria beneficial to\nhumans. It aims to provide a space laboratory for astrobiology experiments\nunder microgravity conditions. The hardware developed for these experiments is\nindigenous and tailored to meet the unique requirements of autonomous\nmicrobiology experiments by controlling pressure, temperature, and nutrition\nflow to bacteria. A rotating platform, which forms the core design, is\ninnovatively utilised to regulate the flow and mixing of nutrients with dormant\nbacteria. The technology demonstration models developed at SSPACE have yielded\npromising results, with ongoing efforts to refine, adapt for space conditions,\nand prepare for integration with nanosatellites or space modules. The\nanticipated payload will be compact, approximately 1U in size (10cm x 10cm x\n10cm), consume less than 5W power, and offer flexibility for various\nmicrobiological studies.","PeriodicalId":501040,"journal":{"name":"arXiv - PHYS - Biological Physics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The SSPACE Astrobiology Payload (SAP) series, starting with the SAP-1 project is designed to conduct in-situ microbiology experiments in low earth orbit. This payload series aims to understand the behaviour of microbial organisms in space, particularly those critical for human health, and the corresponding effects due to microgravity and solar/galactic radiation. SAP-1 focuses on studying Bacillus clausii and Bacillus coagulans, bacteria beneficial to humans. It aims to provide a space laboratory for astrobiology experiments under microgravity conditions. The hardware developed for these experiments is indigenous and tailored to meet the unique requirements of autonomous microbiology experiments by controlling pressure, temperature, and nutrition flow to bacteria. A rotating platform, which forms the core design, is innovatively utilised to regulate the flow and mixing of nutrients with dormant bacteria. The technology demonstration models developed at SSPACE have yielded promising results, with ongoing efforts to refine, adapt for space conditions, and prepare for integration with nanosatellites or space modules. The anticipated payload will be compact, approximately 1U in size (10cm x 10cm x 10cm), consume less than 5W power, and offer flexibility for various microbiological studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SSPACE 天体生物学有效载荷-1(SAP-1)
SSPACE 天体生物学有效载荷(SAP)系列,从 SAP-1 项目开始,旨在低地球轨道上进行原位微生物学实验。该有效载荷系列旨在了解空间微生物有机体的行为,特别是那些对人类健康至关重要的微生物有机体的行为,以及微重力和太阳/银河辐射造成的相应影响。SAP-1的重点是研究对人类有益的细菌Bacillus clausii和Bacillus coagulans。其目的是为微重力条件下的天体生物学实验提供一个空间实验室。为这些实验开发的硬件是本土的,通过控制压力、温度和细菌的营养流来满足自主微生物学实验的独特要求。构成核心设计的旋转平台被创新性地用于调节营养物质与休眠细菌的流动和混合。在 SSPACE 开发的技术示范模型已经取得了可喜的成果,目前正在努力进行改进,以适应太空条件,并为与纳米卫星或太空舱集成做好准备。预期的有效载荷将非常紧凑,大小约为 1U (10 厘米 x 10 厘米 x 10 厘米),功耗小于 5 瓦,并为各种微生物研究提供灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Thresholds in Presence of Epistatic Interactions Choice of Reference Surfaces to assess Plant Health through leaf scale temperature monitoring Physical Insights into Electromagnetic Efficiency of Wireless Implantable Bioelectronics Pseudo-RNA with parallel aligned single-strands and periodic base sequence as a new universality class Hydrodynamic hovering of swimming bacteria above surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1