Kate L. Fenwick, Frédéric Bouchard, Guillaume S. Thekkadath, Duncan England, Philip J. Bustard, Khabat Heshami, Benjamin Sussman
{"title":"Photonic quantum walk with ultrafast time-bin encoding","authors":"Kate L. Fenwick, Frédéric Bouchard, Guillaume S. Thekkadath, Duncan England, Philip J. Bustard, Khabat Heshami, Benjamin Sussman","doi":"10.1364/optica.510312","DOIUrl":null,"url":null,"abstract":"The quantum walk (QW) has proven to be a valuable testbed for fundamental inquiries in quantum technology applications such as quantum simulation and quantum search algorithms. Many benefits have been found by exploring implementations of QWs in various physical systems, including photonic platforms. Here, we propose a platform to perform quantum walks based on ultrafast time-bin encoding (UTBE) and all-optical Kerr gating. This platform supports the scalability of quantum walks to a large number of steps and walkers while retaining a significant degree of programmability. More importantly, ultrafast time bins are encoded at the picosecond time scale, far away from mechanical fluctuations. This enables the scalability of our platform to many modes while preserving excellent interferometric phase stability over extremely long periods of time without requiring active phase stabilization. Our 18-step QW is shown to preserve interferometric phase stability over a period of 50 h, with an overall walk fidelity maintained above 95%.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"74 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.510312","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum walk (QW) has proven to be a valuable testbed for fundamental inquiries in quantum technology applications such as quantum simulation and quantum search algorithms. Many benefits have been found by exploring implementations of QWs in various physical systems, including photonic platforms. Here, we propose a platform to perform quantum walks based on ultrafast time-bin encoding (UTBE) and all-optical Kerr gating. This platform supports the scalability of quantum walks to a large number of steps and walkers while retaining a significant degree of programmability. More importantly, ultrafast time bins are encoded at the picosecond time scale, far away from mechanical fluctuations. This enables the scalability of our platform to many modes while preserving excellent interferometric phase stability over extremely long periods of time without requiring active phase stabilization. Our 18-step QW is shown to preserve interferometric phase stability over a period of 50 h, with an overall walk fidelity maintained above 95%.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.