Tengji Xu, Weipeng Zhang, Jiawei Zhang, Zeyu Luo, Qiarong Xiao, Benshan Wang, Mingcheng Luo, Xingyuan Xu, Bhavin J. Shastri, Paul R. Prucnal, Chaoran Huang
{"title":"Control-free and efficient integrated photonic neural networks via hardware-aware training and pruning","authors":"Tengji Xu, Weipeng Zhang, Jiawei Zhang, Zeyu Luo, Qiarong Xiao, Benshan Wang, Mingcheng Luo, Xingyuan Xu, Bhavin J. Shastri, Paul R. Prucnal, Chaoran Huang","doi":"10.1364/optica.523225","DOIUrl":null,"url":null,"abstract":"Integrated photonic neural networks (PNNs) are at the forefront of AI computing, leveraging light’s unique properties, such as large bandwidth, low latency, and potentially low power consumption. Nevertheless, the integrated optical components are inherently sensitive to external disturbances, thermal interference, and various device imperfections, which detrimentally affect computing accuracy and reliability. Conventional solutions use complicated control methods to stabilize optical devices and chip, which result in high hardware complexity and are impractical for large-scale PNNs. To address this, we propose a training approach to enable control-free, accurate, and energy-efficient photonic computing without adding hardware complexity. The core idea is to train the parameters of a physical neural network towards its noise-robust and energy-efficient region. Our method is validated on different integrated PNN architectures and is applicable to solve various device imperfections in thermally tuned PNNs and PNNs based on phase change materials. A notable 4-bit improvement is achieved in micro-ring resonator-based PNNs without needing complex device control or power-hungry temperature stabilization circuits. Additionally, our approach reduces the energy consumption by tenfold. This advancement represents a significant step towards the practical, energy-efficient, and noise-resilient implementation of large-scale integrated PNNs.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"31 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.523225","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated photonic neural networks (PNNs) are at the forefront of AI computing, leveraging light’s unique properties, such as large bandwidth, low latency, and potentially low power consumption. Nevertheless, the integrated optical components are inherently sensitive to external disturbances, thermal interference, and various device imperfections, which detrimentally affect computing accuracy and reliability. Conventional solutions use complicated control methods to stabilize optical devices and chip, which result in high hardware complexity and are impractical for large-scale PNNs. To address this, we propose a training approach to enable control-free, accurate, and energy-efficient photonic computing without adding hardware complexity. The core idea is to train the parameters of a physical neural network towards its noise-robust and energy-efficient region. Our method is validated on different integrated PNN architectures and is applicable to solve various device imperfections in thermally tuned PNNs and PNNs based on phase change materials. A notable 4-bit improvement is achieved in micro-ring resonator-based PNNs without needing complex device control or power-hungry temperature stabilization circuits. Additionally, our approach reduces the energy consumption by tenfold. This advancement represents a significant step towards the practical, energy-efficient, and noise-resilient implementation of large-scale integrated PNNs.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.