{"title":"Hyperentanglement quantum communication over a 50 km noisy fiber channel","authors":"Zhen-Qiu Zhong, Xiao-Hai Zhan, Jia-Lin Chen, Shuang Wang, Zhen-Qiang Yin, Jia-Qi Geng, De-Yong He, Wei Chen, Guang-Can Guo, Zheng-Fu Han","doi":"10.1364/optica.523955","DOIUrl":null,"url":null,"abstract":"High-dimensional entanglement not only offers a high security level for quantum communication but also promises improved information capacity and noise resistance of the system. However, due to various constraints on different high-dimensional degrees of freedom, whether these advantages can bring improvement to the actual implementation is still not well proven. Here we present a scheme to fully utilize these advantages over long-distance noisy fiber channels. We exploit polarization and time-bin hyperentanglement to achieve high-dimensional coding, and observe significant enhancements in secure key rates and noise tolerance that surpass the capabilities of qubit systems. Moreover, the demonstration achieves a distribution up to 50 km, which is the longest distance for high-dimensional entanglement-based quantum key distribution up to date, to our knowledge. Our demonstration validates the potential of high-dimensional entanglement for quantum communications over long-distance noisy channels, paving the way for a resilient and resource-efficient quantum network.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"60 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.523955","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-dimensional entanglement not only offers a high security level for quantum communication but also promises improved information capacity and noise resistance of the system. However, due to various constraints on different high-dimensional degrees of freedom, whether these advantages can bring improvement to the actual implementation is still not well proven. Here we present a scheme to fully utilize these advantages over long-distance noisy fiber channels. We exploit polarization and time-bin hyperentanglement to achieve high-dimensional coding, and observe significant enhancements in secure key rates and noise tolerance that surpass the capabilities of qubit systems. Moreover, the demonstration achieves a distribution up to 50 km, which is the longest distance for high-dimensional entanglement-based quantum key distribution up to date, to our knowledge. Our demonstration validates the potential of high-dimensional entanglement for quantum communications over long-distance noisy channels, paving the way for a resilient and resource-efficient quantum network.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.