Dose-efficient automatic differentiation for ptychographic reconstruction

IF 8.4 1区 物理与天体物理 Q1 OPTICS Optica Pub Date : 2024-04-26 DOI:10.1364/optica.522380
Longlong Wu, Shinjae Yoo, Yong S. Chu, Xiaojing Huang, Ian K. Robinson
{"title":"Dose-efficient automatic differentiation for ptychographic reconstruction","authors":"Longlong Wu, Shinjae Yoo, Yong S. Chu, Xiaojing Huang, Ian K. Robinson","doi":"10.1364/optica.522380","DOIUrl":null,"url":null,"abstract":"Ptychography, as a powerful lensless imaging method, has become a popular member of the coherent diffractive imaging family over decades of development. The ability to utilize low-dose X-rays and/or fast scans offers a big advantage in a ptychographic measurement (for example, when measuring radiation-sensitive samples), but results in low-photon statistics, making the subsequent phase retrieval challenging. Here, we demonstrate a dose-efficient automatic differentiation framework for ptychographic reconstruction (DAP) at low-photon statistics and low overlap ratio. As no reciprocal space constraint is required in this DAP framework, the framework, based on various forward models, shows superior performance under these conditions. It effectively suppresses potential artifacts in the reconstructed images, especially for the inherent periodic artifact in a raster scan. We validate the effectiveness and robustness of this method using both simulated and measured datasets.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"147 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.522380","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ptychography, as a powerful lensless imaging method, has become a popular member of the coherent diffractive imaging family over decades of development. The ability to utilize low-dose X-rays and/or fast scans offers a big advantage in a ptychographic measurement (for example, when measuring radiation-sensitive samples), but results in low-photon statistics, making the subsequent phase retrieval challenging. Here, we demonstrate a dose-efficient automatic differentiation framework for ptychographic reconstruction (DAP) at low-photon statistics and low overlap ratio. As no reciprocal space constraint is required in this DAP framework, the framework, based on various forward models, shows superior performance under these conditions. It effectively suppresses potential artifacts in the reconstructed images, especially for the inherent periodic artifact in a raster scan. We validate the effectiveness and robustness of this method using both simulated and measured datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分层摄影重建的剂量效率自动分辨技术
层析成像是一种功能强大的无透镜成像方法,经过几十年的发展,已成为相干衍射成像家族中的热门成员。利用低剂量 X 射线和/或快速扫描的能力为分层成像测量提供了巨大优势(例如,在测量对辐射敏感的样品时),但会导致低光子统计,使后续的相位检索具有挑战性。在此,我们展示了一种在低光子统计量和低重叠率条件下的高剂量自动分辨框架(DAP)。由于该 DAP 框架不需要倒易空间约束,因此基于各种前向模型的该框架在这些条件下表现出卓越的性能。它能有效抑制重建图像中的潜在伪影,尤其是光栅扫描中固有的周期性伪影。我们利用模拟和测量数据集验证了这种方法的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optica
Optica OPTICS-
CiteScore
19.70
自引率
2.90%
发文量
191
审稿时长
2 months
期刊介绍: Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.
期刊最新文献
Integrated chirped photonic-crystal cavities in gallium phosphide for broadband soliton generation Photonic quantum walk with ultrafast time-bin encoding Control-free and efficient integrated photonic neural networks via hardware-aware training and pruning Piezoelectrically tunable, narrow linewidth photonic integrated extended-DBR lasers Hyperentanglement quantum communication over a 50 km noisy fiber channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1