{"title":"Combinatorial Results on Barcode Lattices","authors":"Alex Bouquet, Andrés R. Vindas-Meléndez","doi":"10.1007/s11083-024-09670-0","DOIUrl":null,"url":null,"abstract":"<p>A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09670-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A barcode is a finite multiset of intervals on the real line. Jaramillo-Rodriguez (2023) previously defined a map from the space of barcodes with a fixed number of bars to a set of multipermutations, which presented new combinatorial invariants on the space of barcodes. A partial order can be defined on these multipermutations, resulting in a class of posets known as combinatorial barcode lattices. In this paper, we provide a number of equivalent definitions for the combinatorial barcode lattice, show that its Möbius function is a restriction of the Möbius function of the symmetric group under the weak Bruhat order, and show its ground set is the Jordan-Hölder set of a labeled poset. Furthermore, we obtain formulas for the number of join-irreducible elements, the rank-generating function, and the number of maximal chains of combinatorial barcode lattices. Lastly, we make connections between intervals in the combinatorial barcode lattice and certain classes of matchings.