Baris Kasapoglu, Halil Sezen, Tunc Aldemir, Richard Denning
{"title":"Dynamic Seismic Probabilistic Risk Assessment of Nuclear Power Plants Using Advanced Structural Methodologies","authors":"Baris Kasapoglu, Halil Sezen, Tunc Aldemir, Richard Denning","doi":"10.1016/j.nucengdes.2024.113416","DOIUrl":null,"url":null,"abstract":"<div><p>The conditional core damage probability (CCDP) of a representative nuclear power plant is estimated for a beyond design basis earthquake (BDBE) using state-of-the-art structural models within a dynamic probabilistic risk assessment (DPRA) framework. Randomness of seismic excitation and uncertainty of structural parameters are considered using a simulation-based approach. Finite element models are developed for the structure and a liquid container (hydro-accumulator), and fluid–structure interaction is considered with the arbitrary Lagrangian-Eulerian method. The CCDP is evaluated through a time-dependent event tree. Also, correlation among multiple hydro-accumulators is investigated. The results show that operator action and implementation time of mobile safety equipment are critical under BDBE in case of loss of offsite power following an earthquake. It was also found necessary to adopt a DPRA approach to determine the available time for action and core damage timing probabilistically.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324005168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The conditional core damage probability (CCDP) of a representative nuclear power plant is estimated for a beyond design basis earthquake (BDBE) using state-of-the-art structural models within a dynamic probabilistic risk assessment (DPRA) framework. Randomness of seismic excitation and uncertainty of structural parameters are considered using a simulation-based approach. Finite element models are developed for the structure and a liquid container (hydro-accumulator), and fluid–structure interaction is considered with the arbitrary Lagrangian-Eulerian method. The CCDP is evaluated through a time-dependent event tree. Also, correlation among multiple hydro-accumulators is investigated. The results show that operator action and implementation time of mobile safety equipment are critical under BDBE in case of loss of offsite power following an earthquake. It was also found necessary to adopt a DPRA approach to determine the available time for action and core damage timing probabilistically.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.